Контакты

Расшифровка электронной графической формулы в химии. Электронно-графическая формула натрия и его свойства

Квантовые числа

n – главное квантовое число, оно определяет энергию электронов и размер электронного облака, принимает целочисленные значения. Электроны с одинаковым n образуют энергетический уровень. (n = № периода в табл. Менделеева)

L – орбитальное квантовое число определяет форму орбитали и принимает значение от 0 до n-1

n = 1, L = 0 - S-орбиталь (шар)

n = 2, L = 0 ; 1 - S и Р – орбиталь (гантель)

n = 3, L = 0 ; 1 ; 2 - S,P и d – орбиталь (сложная лепестковая форма) (L=0 – S орбит., L=1 - P орбиталь, L=2 – d орбиталь)

n = 4, L = 0 ; 1 ; 2 ; 3 (F – орб. еще более сложная)

m – магнитное квантовое число, определяет пространственную ориентацию орбитали, принимает значение от –L до +L . L=0 m=0 1(одна) S-орбиталь L=1 m= -1;0;1 3 P-орбиталей L=2 m=-2,-1,0,1,2 5 d-орб. и т.д.

- спиновое квантовое число, характеризует движение электрона вокруг своей оси и имеет 2 ориентации: «право», «лево» = + или-

С помощью 4-х квантовых чисел можно описать состояние любого электрона в вакууме, для этого составляют электронные формулы атомов.

Правила составления электронных формул атомов элементов

1. Принцип наименьшей энергии: электроны располагаются на тех орбиталях в атоме, которые характеризуются наименьшей энергией. (Правило Клечковского) Наименьшей энергией обладает орбиталь с наименьшим квантовым числом (n +L ), если (n +L ) у орбиталей равны, наименьшую энергию имеет имеет та у которой меньше n.

2. Принцип Паули: в атоме не может быть 2-х электронов с одинаковым набором всех 4-х квантовых чисел, это значит, что на одной орбитали может поместиться только 2 электрона с антипараллельными спинами.

S подуровень – 1 орбиталь 2е

P подуровень – 3 орбитали 6е

d подуровень – 5 орбиталей 10е

f подуровень – 7 орбиталей 14е

3. Правило Хунда: сумарное спиновое число на подуровене должно быть максимальным, т.е при заполнении подуровня, сначала на каждую орбиталь садится по одному электрону и у всех одно направление спина (направление вращения), а когда подуровень заполнен, на каждую орбиталь подсаживается еще один электрон уже с противоположным спином.

4) Периодическая система (таблица Менделеева)

Свойства простых веществ, а так же формы и свойства соединений элементов находятся в периодической зависимости от заряда ядра и электронной конфигурации атомов элемента. Периодическая система является графическим изображением периодического закона, она состоит из 7-ми периодов (3из них малые 1-й,2 и 3-й) и 8-ми групп.

Физический смысл периодического закона заключается в периодическом изменении свойств элементов в результате периодически возобновляющихся сходных электронных оболочек атомов при возрастании главного квантового числа n

(n = № периода)

В группах расположены элементы с периодически повторяющейся электронной структурой внешнего энергетического уровня и похожими свойствами.

Например: I-гр, А-подгр. :

Na 3s -они все щелочные металлы,

K 4s у них одинаковая структура внешнего

Rb 5s энергетич. уровня s

Cs 6s Металлическая активность возрастает

Fr 7s по ходу вниз

Каждый период (кроме 1-го) начинается двумя s-элементами, заканчивается шестью элементами, причем в малых периодах св-ва элементов изменяются резко.

По табл. вниз металлические св-ва возрастают, т.е легче отдаются электроны, по табл. в право мет. св-ва уменьшаются.

В IV периоде между s и p элементами появляются 10 d-элементов, а в VI и в VII периодах f- элементы.

Электронная структура атомов элементов и их положение в периодической системе тесно взаимосвязаны.

1) Порядковый № элемента =Z(заряду) его ядра и числу электронов в электронной структуре атома.

Например: Z=30(Zn), 30e; 1s,2s,2p,3s,3p,3d,4s (d-элемент)

2)Каждый период начинается с заполнения нового энергетического уровня, поэтому № пер. = главному квантовому числу внешнего энергетического уровня в электронной структуре атома. 4s (Zn)-IVпериод

3)№ гр. совпадает с числом валентных электронов у атомов.

5) Периодически изменяющиеся св-ва атомов элементов:

1. Радиусы атомов : атом не имеет четких границ из за волнового движ. электрона. Орбитальный радиус атома )≈ теоретически рассчитанному расстоянию от ядра атома до главного максимума плотности внешнего электронного облака. Чаще используют эффективные радиусы атомов ( (это межъядерные расстояния в молекулах).

· У металлических элементов , а у неметаллических (особенно у газов) они значительно отличаются.

В периодах (слева направо) r атомов уменьшаются из-за роста заряда их ядер, а в группах (сверху вниз) – растут из за роста числа электронных слоёв, но эта зависимость немонотонна из за особенностей строения атомов.

· Немонотонность изменений св-в элементов по периоду называется внутренней периодичностью, а в группе -вторичной периодичностью

2. Энергия ионизации и сродство к электрону:

Энергия ионизации - это энергия, необходимая для отрыва электрона от нейтрального невозбуждённого атома.

- энергия невозбужд. атома < (при отрыве каждого последующего электрона нужно тратить все больше и больше энергии)

Энергия ионизации характеризует восстановительные св-ва атомов элементов: Чем меньше у атома , тем больше восстановительные св-ва элемента. зависит от атомного радиуса и заряда ядра элемента и от электронной конфигурации атомов элемента. Чем меньше радиус и больше заряд, тем выше значение .

В периоде (слева направо) значение I растёт, но немонотонно. У металлов I меньше чем у неметаллов.

В группах (сверху вниз) значение в целом уменьшается.

F-энергия сродства к электрону – это энергетический эффект присоединения электрона к нейтральному атому. F может быть (+) или (-): СL+e→ (выделяется) Не+е= = -0.22 эв (поглащается)

F характеризует окислительные св-ва атомов элементов: чем выше F, тем выше окислительные св-ва. F зависит от r (радиуса атома), Z (заряда) и от электронной конфигурации атомов элемента. Мах F у р-элементов VIIA группы, Min F у инертных газов.

Электроотрицательность – способность атома элемента оттягивать на себя электроны при образовании хим. связи с атомами других элементов. ЭО = 1/2 (1+F)

В периодах (слева направо) ЭО в целом растет, в главных подгруппах (сверху вниз) уменьшается, но зависимость не монотонна.

Виды химической связи

Ковалентная связь – связь возникающая за счет образования общих электронных пар.

В двухатомных молекулах ( образуется неполярная ковалентная связь, т.к. общая электронная пара в одинаковой степени принадлежит обоим атомам. F + F → F F

Одинарная ковалентная связь - атомы связаны одной общей электронной парой, если двумя, то связь двойная , если тремя то тройная . N + N → N N (число неспареных электронов 8-N = 3, N-номер группы)

Полярная ковалентная связь – связь между атомами различных элементов неметаллов (HCL, , N )

Общие электронные пары в таких соединениях смещены к атомам с большей электроотрицательностью.

Ионная связь – связь возникающая между ионами, за счет электростатического притяжения.

Ионная связь возникает между атомами элементов, резко отличающимися по величине электроотрицательности. Например между типич. металлами и типич. неметаллами (Na CL, Na, F)

Кроме того ионная связь образуется между атомами металла и кислорода в солях кислотосодержащих кислот и в щелочах.

Металлическая связь – связь в металлах между атом-ионами по средством обобществленных электронов.

Атомы металлов на внешнем уровне содержат мало электронов. Эти электроны легко отбрасываются, а атомы превращаются в положительные ионы. Оторвавшиеся электроны перемещаются от одного иона к другому связывая их в единое целое.

7) Электрод – это металл или др. токопроводящий материал, погруженный в раствор его соли (электролита), а реакция протекающая на нём, называется электродной реакцией . Если металл привести в контакт с раствором соли, то ионы , гидратируясь, переходят с поверхности металла в раствор, и дегидратируясь, обратно, из раствора в металл (под действием сил кристаллической решётки). Когда скорости этих процессов становятся равными, образуется ДЭС (двойной электро-слой) и возникает электродный потенциал.

Электродный потенциал (𝞿) -это разность электростатических потенциалов между электролитом и электродом.

Значение электродного потенциала зависит от природы веществ – участников электродного процесса, от концентрации этих веществ, от t и определяется по уравнению Нернста.

Уравнение Нернста : = + ox, Red – концентрации окислительной и восстановительной форм

–число электронов, принимающих участие в процессе.

– cтандартный электродный потенциал (тбл. величина)

Уравнение Нернста для металлических электродов: +

для окислительно-восстановительных электродов:

для водородного электрода:

(условно принято) – это НВЭ (нормальный водородный электрод) принят в качестве эталона, для сравнения электродных потенциалов различных электрохимич. систем.

Условие протекания окислительно-восстановительной реакции:

8) Гальванический элемент – прибор, в котором за счет самопроизвольно идущей реакции окисления-восстановления получается электрический ток. Он представляет собой систему из 2-х электродов, соединенных жидкостным мостиком или полупроницаемой перегородкой. Если соединить электроды металлическим проводником, то электроны перетекут от одного электрода (восстановителя) к другому (окислителю) получится электрический ток. Хим. энергия превращается в электрическую. Окислитель - электрод с бОльшим значением потенциала (катод(+)), на катоде идут процессы восстановления.

Восстановитель – электрод с меньшим знач. потенциала (анод(-)), на аноде идут процессы окисления.

Аккумулятор – это обратимый химический источник тока, его можно перезаряжать и использовать многократно.

Например свинцовый аккумулятор (кислотный) - состоит из электродов (положительного и отрицательного)и электролита.

1-й электрод – свинец, 2-й элктрод –диоксид свинца, электролит 30% серной к-ты.

Принцип работы основан на электрохимических реакциях свинца и диоксида свинца, в водном растворе серной кислоты.

Общее уравнение работы аккумулятора :

9) Электролиз – окислительно-восстановтительный процесс, протекающий на электродах при прохождении тока через электролит.

В электролитеческую ванну, заполненную электролитом, опускают 2 электрода, и присоединяют к источнику тока. Источник тока перекачивает электроны от одного электрода к другому. Электрод с которого снимаются электроны приобретает + заряд (анод), который получает электроны (-) заряд (катод).

Прцессы, протекающие при электролизе определяются свойствами электролита, растворителя и материала электрода. (Если электролиз протекает в водном растворе, то на катоде им аноде могут восстанавливаться и окисляться молекулы Н2О.

Катод: 2Н2О + 2е = 2 ОН

Анод: А2Н2О – 4е = О2 + 4Н

Если возможно протекание нескольких реакций, то в первую очередь протекает та, которая требует минимальных затрат энегрии.

Инертным называется электрод, материал которого не окисляется в ходе электролиза.

На аноде может окисляться материал самого анода, например, елси анод из Ni, Cu,Cd, Pb и др. Такие аноды называюся растворимыми.

Метод с растворимым анодом используется для рафинирования металлов. Анод выполнен из черного металла.

10) Электрохимическая поляризация –явление отклонения потенциала элетродной реакции от равновесного. Перенапряжение – величина на которую идет отклонение ɳ (эта).

Возникновение поляризации связано с замедленностью отдельных стадий электрохимического процесса. Особенно велика поляризация при выделении газов О2, Н2. Поляризация электрода зависит от материала электрода, чем выше плотность тока i=I/S (I – ток, проходящий через электрод, S- площадь электрода). Поляризационная кривая – зависимость потенциала электрода от плотности тока.

Величина поляризации.

11) Законы фарадея: 1-й закон: Масса в-ва, образуется при электролизе, пропорциональна кол-ву электричества, прошедшего через электролит. = K*Q где: Q- кол-во электричества, Q=I*t, где: I-cила тока, t-время.

K= где: Э- эквивалентная масса Э = где: М – моль (молярная масса вещества), n – число электронов, перемещаемых при окислении или восстановлении, F – число Фарадея = 26,8 А или 96500 К/моль.

2-й закон: При прохождении через разные электролиты одного и того же количества электричества массы веществ, выделившихся на одноименных электродах пропорциональны их эквивалентным массам.

Применение вэлектрохимических процессов: 1) Принцип г.Э используется в автономных источниках питания. Бывают первичные и вторичные. Первичные – необратимы, не могут вернуться в рабочее состояние посли расхода активного в-ва (батарейки питания). Вторичные – можно регенирировать, пропуская ток в обратном направлении (аккумуляторы).

Электролиз используется в промышленности: для получения щелочей и др. веществ., для получения многих металлов – AL, Mg, Na, Cd., для очистки (рафинирования) Ме, используются загрязнённые Ме, в качестве анода (Cu, Ni, Pb) , используется в гальванотехнике.

Гальваностегия – процесс нанесения на поверхность металлических изделий слоёв других металлов, это делают для защиты от коррозии и для красоты.

Гальванопластика – для получения отпечатков, копий изделий, например для типографических клише.

13) Физические св-ва металлов . Металлический блеск, высокая электропроводность, теплопроводность, ковкость, пластичность. Эти свойства обуславливаются наличием в металлах подвижных электронов и металлической связи.

Различие в природе металлов, их структуре приводит к различию некоторых физ свойств. Щелочные (Li, Na, K, Rb, Cs) при малой плотности упаковки и малом заряде мЯгки, а d- металлы (Cr) очень твердые. Большое различие есть в t плавления, от 28°C (Cs) до 3370°C (W).

12) Положение металлов в периодической системе.

Классификация металлов

не активные (Cu-Au, и т.д…)

Особенности кристаллов металлов : атомы металлов выстраиваются в кристаллические решетки

Виды кристаллических решеток : Объемно центрированная (кубическая), гранецентрированная (кубич.), плотнейшая гексагональная.

Особенности строения атомов: на внешнем энергетическом уровне малое кол-во электронов.

Методы получения металлов: 1. Металлотермия - восстановление руд, с помощью алюминия, магния, и др. металлов

2.Пирометалургия – востанивление руд с помощью угля, СО, при высоких t:

+ → 2 Fe + 3 (при температуре)

3.Электролиз : а) Сu (Сu – катод, CL – анод)

б) 2NaCL → 2Na + (2Na – катод,

4.Гидрометалургический метод – так же часто включает стадию получения металлов электрохимическим восстановлением.

2ZnS + 3 (при переработке сульфидных руд, сначала сульфиды

переводят в оксиды при высокой t.)

2Zn + 2 (2Zn – катод, )

Современные технологии направлены на получение металлов высокой чистоты (зонная плавка, плавка электронными лучами и т.д.)

14) Химические св-ва металлов . По хим. св-вам металлы являются восстановителями и реагируют с окислителями.

В период. системе большинство элементов – металлы. К металлам относятся все s,d,f-элементы (кроме и He) а так же р-элементы. К р-элементам относят элементы III A гр – AL, Ga, In, IV A гр – Ge, Sn, Pb, в V A гр Sb, Bi, и в VI A – Ро (полоний).

Классификация металлов : 1.По электронной структуре: s,p,d и f – металлы.

2. По восстановительной активности: активные (Li-AL)(по ряду напряжений), средние (AL-H),

не активные (Cu-Au, и т.д…)

Восстановительная активность свободных атомов металлов характеризуется энергией ионизации (). Чем меньше , тем выше восстановительная актив. металла. В гр. А, (для s и р-металлов) восстановительная актив. растет сверху вниз, а в гр. В (для d-металлов) –уменьшается.

В растворах восстановительная активность атомов металлов характеризуется значением электродного потенциала (). Чем отрицательнее, тем выше восст. актив.. Самые активные восстановители – щелочные металлы.

1) Металлы энергично реагируют с простыми веществами: , галогены(фтор, хлор, бром, йод), сера, водород.

С кислородом: Большинство металлов окисляются на воздухе, покрываясь оксидной плёнкой, если плёнка плотная, она предохраняет металл от коррозии. все щелочные металлы : Li,Na,К, и т.д. активно реагируют с кислородом, Rb, Cs – самовоспламеняются.

С хлором : энергично реагируют (Mg+ =Mg )

C серой : менее энергично (при нагревании) (Fe+S→FeS cульфид железа)

С водородом : реагируют только щелочные и щелочно-земельные металлы. (2Li+ =2LiH) (Ca+ )

2) Реакции с водой : Ме+ металлы реагируют с если их электродный потенциал ниже чем у водорода (ниже 0) реагируют вытесняя . Например: -2,714в, поэтому 2Na+

Если на поверхности металла находится оксидная пленка взаимодействие с водой протекает при нагревании.

3) Реакции с растворами солей : металлы реагируют с растворами солей, вытесняя из них менее активный металл:

() Cu = 0,337 в, () /Ni = - 0,25в

4)Реакции с щелочами : реакции протекают с выделением , электродный потенциал должен быть , металл должени иметь амфотерную природу своих оксидов и гидрооксдов (это AL,Zn,Cr,Be и др.)

5) Реакции с кислотами : взаимодействие металлов с кислотами зависит от активности металла, концентрации к-ты и t.

HCL-взаимодействует только с металлами у которых , с выделением водорода, хлорид металла должен быть растворим в воде.

(разбавленая серная к-та реагирует с металлами так же, как соляная: Zn+

Концентрированная серная кислота окисляет металлы за счет сульфат-иона () продукты восстановления зависят от активности металла. к Mg + (активные восстанавливают до , средние до , малоактивные до .

Серная к-та пассивирует металлы: Fe, Co, Ni, Cr, AL, Be. (с этими металлами реакция идет только при нагревании).

В реакцию с концентрированной серной кислотой вступает медь

Реакция с разбавленной азотной кислотой . Разбавл. азот. к-та более сильный окислитель чем серная, окисляет большинство металлов при комнатной t. Восстанавливается с активными металлами до , с металлами средней активности до или , с неактивным до –NO.

Концентрированная азотная к-та восстанавливается с большинством металлов до бурого газа –NO, и еще она пассивирует те же металлы при обычной t. (Fe,Ni,Co,Cr,AL,Be)

Неактивные d-металлы не окисляются азотной к-той, их можно окислить «царской водкой» + .

В реакциях металлов с азотной к-той любой концентрации и концентрированной серной к-той водород не выделяется.

Дабы обучиться составлять электронно-графические формулы, значимо осознать теорию строения ядерного ядра. Ядро атома составляют протоны и нейтроны. Вокруг ядра атома на электронных орбиталях находятся электроны.

Вам понадобится

  • – ручка;
  • – бумага для записей;
  • – периодическая система элементов (таблица Менделеева).

Инструкция

1. Электроны в атоме занимают свободные орбитали в последовательности, называемой шкалой энергии:1s / 2s, 2p / 3s, 3p / 4s, 3d, 4p / 5s, 4d, 5p / 6s, 4d, 5d, 6p / 7s, 5f, 6d, 7p. На одной орбитали могут располагаться два электрона с противоположными спинами – направлениями вращения.

2. Конструкцию электронных оболочек выражают с поддержкой графических электронных формул. Для записи формулы используйте матрицу. В одной ячейке могут располагаться один либо два электрона с противоположными спинами. Электроны изображаются стрелками. Матрица наглядно показывает, что на s-орбитали могут располагаться два электрона, на p-орбитали – 6, на d – 10, на f -14.

3. Разглядите правило составления электронно-графической формулы на примере марганца. Обнаружьте марганец в таблице Менделеева. Его порядковый номер 25, значит в атоме 25 электронов, это элемент четвертого периода.

4. Запишите порядковый номер и символ элемента рядом с матрицей. В соответствии со шкалой энергии заполоните ступенчато 1s, 2s, 2p, 3s, 3p, 4s ярусы, вписав по два электрона в ячейку. Получится 2+2+6+2+6+2=20 электронов. Эти ярусы заполнены всецело.

5. У вас осталось еще пять электронов и незаполненный 3d-ярус. Расположите электроны в ячейках d-подуровня, начиная слева. Электроны с идентичными спинами расположите в ячейках вначале по одному. Если все ячейки заполнены, начиная слева, добавьте по второму электрону с противоположным спином. У марганца пять d-электронов, расположенных по одному в всей ячейке.

6. Электронно-графические формулы наглядно показывают число неспаренных электронов, которые определяют валентность.

При создании теоретических и фактических работ по математике, физике, химии студент либо школьник сталкивается с необходимостью вставки особых символов и трудных формул. Располагая приложением Word из офисного пакета Microsoft, дозволено набрать электронную формулу всякий трудности.

Инструкция

1. Откройте новейший документ в Microsoft Word. Присвойте ему наименование и сбережете в той же папке, где у вас лежит работа, дабы в грядущем не искать.

2. Перейдите на вкладку «Вставка». Справа обнаружьте символ?, а рядом надпись «Формула». Нажмите на стрелочку. Появится окно, в котором вы можете предпочесть встроенную формулу, скажем, формулу квадратного уравнения.

3. Нажмите на стрелку и на верхней панели появятся самые различные символы, которые вам могут потребоваться при написании определенно этой формулы. Изменив ее так, как надобно вам, вы можете сберечь ее. С этого момента она будет выпадать в списке встроенных формул.

4. Если вам необходимо перенести формулу в текст, тот, что позднее надобно поместить на сайте, то кликните на энергичном поле с ней правой кнопкой мыши и выберите не высокопрофессиональный, а линейный метод написания. В частности, формула все того же квадратного уравнения в данном случае примет вид:x=(-b±?(b^2-4ac))/2a.

5. Иной вариант написания электронной формулы в Word – через конструктор. Зажмите единовременно клавиши Alt и =. У вас сразу появится поле для написания формулы, а в верхней панели откроется конструктор. Тут вы можете предпочесть все знаки, которые могут потребоваться для записи уравнения и решения всякий задачи.

6. Некоторые символы линейной записи могут быть неясными читателю, неизвестному с компьютерной символикой. В этом случае самые трудные формулы либо уравнения имеет толк сберечь в графическом виде. Для этого откройте самый легкой графический редактор Paint: «Пуск» – «Программы» – «Paint». После этого увеличьте масштаб документа с формулой так, дабы она заняла каждый экран. Это нужно, дабы сохраненное изображение имело наибольшее разрешение. Нажмите на клавиатуре PrtScr, перейдите в Paint и нажмите Ctrl+V.

7. Обрежьте все лишнее. В результате у вас получится добротное изображение с необходимой формулой.

Видео по теме

Обратите внимание!
Помните, что химия – наука исключений. У атомов побочных подгрупп Периодической системы встречается «проскок» электрона. Скажем, у хрома с порядковым номером 24 один из электронов с 4s-яруса переходит в ячейку d-яруса. Схожий результат есть у молибдена, ниобия и др. Помимо того, есть представление возбужденного состояния атома, когда спаренные электроны распариваются и переходят на соседние орбитали. Следственно при составлении электронно-графических формул элементов пятого и последующих периодов побочной подгруппы сверяйтесь со справочником.

    Задача составления электронной формулы химического элемента не самая простая.

    Итак, алгоритм составления электронных формул элементов такой:

    • Сначала записываем знак хим. элемента, где внизу слева от знака указываем его порядковый номер.
    • Далее по номеру периода (из которого элемент) определяем число энергетических уровней и рисуем рядом со знаком хим-го элемента такое количество дуг.
    • Затем по номеру группы число электронов на внешнем уровне, записываем под дугой.
    • На 1 — ом уровне максимально возможно 2е, на втором уже 8, на третьем — целых 18. Начинаем ставить числа под соответствующими дугами.
    • Число электронов на предпоследнем уровне нужно рассчитывать так: из порядкового номера элемента отнимается число уже проставленных электронов.
    • Остается превратить нашу схему в электронную формулу:

    Вот электронные формулы некоторых химических элементов:

    1. Пишем химический элемент и его порядковый номер.Номер показывает кол-во электронов в атоме.
    2. Составляем формулу. Для этого нужно узнать количество энергетических уровней, основой для определения берется номер периода элемента.
    3. Разбиваем уровни на под уровни.

    Ниже можно увидеть пример, как правильно составлять электронные формулы химических элементов.

  • Составить электронные формулы химических элементов нужно таким способом: нужно посмотреть номер элемента в таблице Менделеева, таким образом узнать сколько у него электронов. Затем нужно узнать количество уровней, который равен периоду. Затем пишутся подуровни и они заполняются:

    Первым делом вам надо определить число атомов согласно таблицы Менделеева.

    Для составления электронной формулы вам понадобится периодическая система Менделеева. Находите ваш химический элемент там и смотрите период — он будет равен числу энергетических уровней. Номер группы будет соответствовать численно количеству электронов на последнем уровне. Номер элемента будет количественно равен числу его электронов.Так же вам четко надо знать, что на первом уровне есть максимум 2 электрона, на втором — 8, на третьем — 18.

    Это основные моменты. Ко всему прочему в интернете (в том числе и нашем сайте) вы можете найти информацию с уже готовой электронной формулой для каждого элемента, так вы сможете проверить себя.

    Составление электронных формул химических элементов очень даже сложный процесс, без специальных таблиц тут не обойтись, да и формул нужно применять целую кучу. Вкратце для составления нужно пройти по этим этапам:

    Нужно составить орбитальную диаграмму, в которой будет понятие отличия электронов друг от друга. В диаграмме выделяются орбитали и электроны.

    Электроны заполняются по уровням, снизу в верх и имеют несколько подуровней.

    Итак вначале узнам общее количество электронов заданного атома.

    Заполняем формулу по определнной схеме и записываем — это и будет электронной формулой.

    Например у Азота эта формула выглядит так, сначала разбираемся с электронами:

    И записываем формулу:

    Чтобы понять принцип составления электронной формулы химического элемента , для начала нужно определить по номеру в таблице Менделеева общее количество электронов в атоме. После этого нужно определить число энергетических уровней, взяв за основу номер периода, в котором находится элемент.

    После этого уровни разбиваются на подуровни, которые заполняют электронами, основываясь на Принципе наименьшей энергии.

    Можно проверить правильность своих рассуждений, заглянув, например, сюда .

    Составив электронную формулу химического элемента, можно узнать, сколько электронов и электронных слоев в конкретном атоме, а также порядок их распределения по слоям.

    Для начала определяем порядковый номер элемента по таблице Менделеева, он соответствует числу электронов. Количество электронных слоев указывает на номер периода, а количество число электронов на последнем слое атома соответствует номеру группы.

    • сначала заполняем s-подуровень, а потом р-, d- b f-подуровни;
    • по правилу Клечковского электроны заполняют орбитали в порядке возрастания энергии этих орбиталей;
    • по правилу Хунда электроны в пределах одного подуровня занимают свободные орбитали по одному, а потом образуют пары;
    • по принципу Паули на одной орбитали больше 2 электронов не бывает.
  • Электронная формула химического элемента показывает сколько электронных слоев и сколько электронов содержится в атоме и как они распределены по слоям.

    Чтобы составить электронную формулу химического элемента, нужно заглянуть в таблицу Менделеева и использовать полученные сведения для данного элемента. Порядковый номер элемента в таблице Менделеева соответствует количеству электронов в атоме. Число электронных слоев соответствует номеру периода, число электронов на последнем электронном слое соответствует номеру группы.

    Необходимо помнить, что на первом слое находится максимум 2 электрона 1s2, на втором — максимум 8 (два s и шесть р: 2s2 2p6), на третьем — максимум 18 (два s, шесть p, и десять d: 3s2 3p6 3d10).

    Например, электронная формула углерода: С 1s2 2s2 2p2 (порядковый номер 6, номер периода 2, номер группы 4).

    Электронная формула натрия: Na 1s2 2s2 2p6 3s1 (порядковый номер 11, номер периода 3, номер группы 1).

    Для проверки правильности написания электронной формулы можно заглянуть на сайт www.alhimikov.net.

    Составление электронной формулы хим.элементов на первый взгляд может показаться довольно сложным занятием, однако все станет понятно, если придерживаться следующей схемы:

    • сперва пишем орбитали
    • вставляем перед орбиталями числа, которые указывают номер энергетического уровня. Не забываем формулу для определения максимального количества электронов на энергетическом уровне: N=2n2

    А как узнать число энергетических уровней? Просто посмотрите таблицу Менделеева: это число равно номеру периода, в котором данный элемент находится.

    • над значком орбитали пишем число, которое обозначает количество электронов, которые находятся на этой орбитали.

    Например, электронная формула скандия будет выглядеть таким образом.

Практическая работа

1. Основные положения

Периодическая система химических элементов и строение атома

Современное определение Периодического закона

Свойства химических элементов и образуемых ими вещества находятся в периодической зависимости от зарядов их атомных ядер

Таблица Периодической системы химических элементов графически отображае Периодический закон.

Каждое число в ней характеризуе какую - либо особенность в стоении атомов:

а) порядковый (атомный) номер химического элемента укзывает на заряд его атомного ядра, то есть на число протонов, содержащихся в нем, а так как атом электронейтрален, то и на число электоронов, находящихся вокруг атомного ядра.

Число нейтронов определяют по формуле: N = A - Z ,

где А - массовое число (атомная масса), Z - порядковый номер элемента;

б) номер периода соответствует числу энергетических уровней (электорнных слоев) в атомах элементов данного периода;

в) номер группы соответствует числу электронов на внешнем уровне для элементов гоавных подгрупп и максимальному числу валентных электронов для элементов побочных подрупп.

Изменение металлических и неметаллических свойств элементов

в периодах и группах

1. В пределах одного периода с ростом порядкового номера металлические свойства элементов ослабевают, а неметаллические – усиливаются, так как:

1) растет число ē на внешнем уровне атомов (оно равно номеру группы);

2) число энергетических уровней в пределах периода не изменяется (оно равно номеру периода);

3) радиус атомов уменьшается.

2. В пределах одной и той же группы (главной подгруппы) с ростом порядкового номера металлические свойства элементов усиливаются, а неметаллические ослабевают, так как:

1) число электронов на внешнем уровне атомов одинаково (оно равно номеру группы);

2) число энергетических уровней в атомах растет (оно равно номеру периода);

3) радиус атомов увеличивается.

Доказательства сложности строения атома

1. Ирландский физик Стони ввел понятие «электрон» для обозначения частиц (например, электризация эбонитовой палочки), появление статического электричества на одежде.

2. Катодные лучи – поток электронов из атомов металла, из которого изготовлен катод, вызывали свечение стекла (Томсон и Перрен). Был установлен отрицательный заряд электрона. Этот наименьший заряд принят за единицу = -1.

Томсон установил и массу его, равную 1/1840 массы атома водорода.

3. Радиоактивность – явление, открытое А. Беккерелем. Различают 3 вида радиоактивных лучей:

а) α – лучи, состоящие из α – частиц с зарядом +2 и массой 4;

б) β – лучи – поток электронов; в) γ – лучи – электромагнитные волны.

Следовательно, атом делим и имеет сложное строение.

Таблица 1 Планетарная модель атома (Резерфорда)

Ядро

Равно числу нуклонов (сумма протонов и нейтронов)

1) р + (имеют массу = 1 и заряд = +1)

Число их равно № элемента;

2) n 0 (имеют массу = 1 и заряд = 0)

Число их N = A r Z . ( Z – число протонов)

Электронная оболочка

Состоит из электронов

(масса стремится к нулю и заряд = -1);

Число их равно № элемента.

Вся масса атома сосредоточена в ядре

Атом электронейтрален

Атом - электронейтральная система взаимодействующих элементарых частиц, состоящая из ядра (образованного протонами и нейтронами) и электронов

Строение электронных оболочек атомов

Понятие об электронной оболочке атома и энергетических уровнях

1. Электронная оболочка совокупность электронов, окружающих атомное ядро.

2. В электронной оболочке различают слои, на которых располагаются электроны с различным запасом энергии, их называют энергетические уровни . Число этих уровней равно номеру периода в таблице Менделеева.

3. Пространство вокруг ядра, в котором наиболее вероятно нахождение электрона (около 90%), называется орбиталью .

Размер и форма орбиталей

Рис. 1 Формы s-, p- и d-орбиталей

1) s 2 - электроны; сферическая, симметрична относительно ядра и не имеет направления.

2) р 6 – электроны; гантелеобразные, расположены в атоме взаимно перпендикулярно

Существуют орбитали более сложной формы: d 10 - орбитали и f 14 - орбитали.

Число энергетических уровней (электронных слоев) в атоме равно номеру периода в системе Д.И. Менделеева, к которому принадлежит химический элемент: у атомов элементов первого пеиода - один энергетический уровень, второго периода - два, третьего периода - три, седьмого периода - семь.

Наибольшее число электронов на энергетическом уровне определяется по формуле:

N = 2 n 2 , где N - максимальное число электронов;

n - номер уровня или главное квнтовое число. (Целое число n , обозначающееномер энергетического уровня, называется главным квантовым числом ).

Энергетические уровни и электронная конфигурация атома

Атом имеет сложное строение. Он состоит из ядра, в состав которого входят протоны и нейтроны, и электронов, вращающихся вокруг ядра атома. Заряд протона равен +1, а масса 1 у.е. Нейтрон - электронейтральная частица, масса примерно 1 у.е. Электрон - заряд равен -1, масса 5,5∙10 -4 у.е. В целом атом электронейтрален, число протонов в ядре атома равно числу электронов в атоме. Электроны в атоме распределяются на энергетических уровнях.

Количество энергетических уровней в атоме определяется номером периода, в котором находится данный элемент. При построении электронных моделей атомов следует помнить, что максимальное количество электронов на энергетическом уровне равно 2 n 2 , где n – номер энергетического уровня. В соответствии с этим на первом, ближайшем к ядру уровне может находиться не более 2 электронов, на втором – не более 8, на третьем – не более 18, на четвертом – не более 32. На наружном энергетическом уровне не может быть более 8 электронов.

Атомные спектры поглощения и испускания однозначно показывают, что все атомы имеют целый ряд возможных энергетических состояний, называемых основным и возбужденными электронными состояниями (рис.1).

Запись распределения электронов в атоме по электронным уровням и подуровням называется его электронной конфигурацией и может быть сделана как для основного, так и возбужденного состояния атома. Для определения конкретной электронной конфигурации атома в основном состоянии существуют следующие три положения:

Принцип заполнения (наименьшей энергии). Электроны в основном состоянии заполняют орбитали в последовательности повышения орбитальных энергетических уровней. Низшие по энергии орбитали всегда заполняются первыми.

Принцип Паули. На любой орбитали может находиться не более двух электронов, причем с противоположно направленными спинами (спин – особое свойство электрона, не имеющее аналогов в макромире, которое упрощенно можно представить как вращение электрона вокруг собственной оси).

Правило Гунда. Вырожденные (с одинаковой энергией) орбитали заполняются одиночными электронами с одинаково направленными спинами, лишь после этого идет заполнение вырожденных орбиталей электронами с противоположно направленными спинами согласно принципу Паули.

Квантовые числа

Главное квантовое число n эквивалентно квантовому числу в теории Бора. Оно в основном определяет энергию электронов на данной орбитали.

.....

....

Орбитальное квантовое число l определяет значение орбитального момента количества движения электрона на данной орбитали. Допустимые значения: 0, 1, 2, 3, ... , n-1.

Это квантовое число описывает поведение атомной орбитали при поворотах системы координат с центром на атомном ядре.

Орбитальное магнитное квантовое число m l определяет значение составляющей проекции момента количества движения электрона на выделенное направление в пространстве. В отсутствие внешнего магнитного поля электроны на орбиталях с одинаковым значением орбитального квантового числа l энергетически равноценны (т.е. их энергетические уровни вырождены).

Однако в постоянном магнитном поле некоторые спектральные линии расщепляются. Это означает, что электроны становятся энергетически неравноценными. Например, p-состояния в магнитном поле принимают 3 значения вместо одного, d-состояния – 5 значений. Допустимые значения m l для данного l : - l , ... -2, -1, 0, +1, +2, ... + l

Спиновое квантовое число m s связано с наличием собственного магнитного момента у электрона. В общем виде выражение для магнитного момента количества движения совпадает с таковым для орбитального момента:

Для электрона m s принимает только два значения: +1/2 и -1/2. Иногда для более наглядного объяснения понятия спина используют грубую аналогию – электрон представляют как летящий волчок (круговой ток, создающий собственное магнитное поле). Такая аналогия позволяет объяснить наличие спина 1/2 у электрона и протона, но не у нейтрона – частицы с нулевым зарядом.

Понятие "спин" не укладывается в наши "макропредставления" о пространстве. При всех способах его регистрации спин всегда направлен вдоль той оси, которую наблюдатель выбрал за исходную. Значение спина 1/2 означает, что электрон (протон, нейтрон) становится идентичным сам себе при обороте на 720 0 , а не 360 0 , как в нашем трехмерном мире. Спин принято считать одним из фундаментальных свойств природы (т.е. он невыводим, как гравитация и электричество).

Каждую орбиталь обозначают квадратной ячейкой, электроны – противоположно направленными стрелками (смотрите решение упражнений по этой теме)

Электронная формула – это формула, которая показывает распределение электронов на электронных слоях в атоме.

Таблица 2

Главное квантовое число, типы и число орбиталей, максимальное число электронов на подуровнях и уровнях

Энергетический уровень

(номер периода)

n

Число подуровней, равное n

Форма (тип) орбиталей

Число орбиталей

Максимальное число электронов

в подуровне

в уровне, равное n 2

на подуровнях

на уровнях

К ( n =1)

1 s

Практическая работа

Цель работы:

6) Вывод

Задание № 1

5. Число электронов N ē

6 . Заряд ядра атома , Z

7. Массовое число, А

8. Число нейтронов, N n 0 = А - N р +

а) по группе

б) по периоду

Задание № 2

1) электронную формулу атома элемента, по числу электронов на внешнем уровне металлический и неметаллический характер (если на внешнем уровне 1-3 электрона, то элемент- металл, если более 3, то элемент - неметалл;

2) электронно- структурную формулу валентной оболочки атома элемента, нормальное и возбужденное состояние атома, отрицательную и положительные степени окисления для p - элементов (неметаллов), высшую и низшую положительные степени окисления для металлов ( s - и d - семейства);

3) формулу водородного соединения (для s -элемента гидрид с Н - , для p - элемента газообразное водородное соединение с Н + ), назвать;

4) формулы оксидов, в которых проявляются положительные степени окисления, назвать, указать характер;

5) формулы соответствующих оксидам оснований и кислот, назвать; формулы солей, назвать.

Характеристика p - элемента S - серы, находится в III периоде главной подгруппы VI группы

1) 16 S 1 s 2 2 s 2 2 p 6 3 s 2 3 p 4 - неметалл, так как на внешнем уровне у атома более трех электронов - шесть

2) S 3 s 2 3 p 4 р - элемент

нормальное состояние атома - 2 непарных электрона, следовательно, S сера

S 4 проявляет отрицательную степень окисления (-2):

3 s 2 S 0 + 2 ē → S -2

S * первое возбужденное состояние - 4 непарных электрона, следовательно, S

3 d 1 проявляет положительную степень окисления (+4):

3 p 3 S 0 - 4 ē → S +4

3 s 2

второе возбужденное состояние - 6 непарных электронов, следовательно,

3 d 2 сера проявляет положительную степень окисления (+6):

S ** 3 p 3 S 0 - 6 ē → S +6

3 s 1

3) S -2 H 2 S - сероводород, водный раствор которого является сероводородной кислотой.

Соли H 2 S называются сульфидами; (назвать) К 2 S - сульфид калия.

4) S +4 SO 2 (оксид серы IV ) → кислота H 2 SO 3 → соли:

К 2 SO 3 и КН SO 3

5) S +6 SO 3 (оксид серы VI ) → кислота H 2 SO 4 → соли: К 2 SO 4 и КН SO 4

Характеристика s - элемента Са - кальция, находится в четвертом периоде главной подгруппы второй группы

1) 20 Са 1 s 2 2 s 2 2 p 6 3 s 2 3 p 6 4 s 2 K кальций металл, так как на внешнем уровне у атома меньше трёх электронов - 2 электрона

2) Са 4 s 2 s - элемент; Са 4 s 2 - нормальное состояние атома - нет непарных электронов

Са * возбужденное состояние атома - два непарных электрона, следовательно,

Са 0 - 2 ē → Са +2

1 Са - проявляет положительную степень окисления (+2); отрицательной степени

4 s 1 окисления у металлов нет

3) Са +2 Н 2 - - водородное соединение; СаН 2 (гидрид кальция)

4) Са +2 → оксид СаО → основание Са(ОН) 2 соли: 1) Са CI 2 и СаОН CI 2) CaSO 3 и Ca (HSO 3 ) 2

Задание № 3

Форма ē

элемента

Элемент

Валентная

оболочка

Низшая степень окисления

Водородное соединение

Высшая степень окисления

Формула Высшего оксида

Формула гидроксида

Формула соли

s - элемент

р - элемент

Вывод:

Практическая работа

Вариант 1

Составление электронных формул атомов элементов и графических схем, заполнение их электронами

Ход работы

Задание № 1

Заполнить таблицу:

5. Число электронов N ē

6 . Заряд ядра атома , Z

7. Массовое число, А

8. Число нейтронов, N n 0 = А - N р +

9. Написать распределение электронов по энергетическим уровням

10. Сравнение с элементами соседями:

а) по группе

б) по периоду

11. Формула высшего оксида и гидроксида и их характер

Задание № 2

Характеристика элемента по положению его в периодической системе, указать валентные возможности атома элемента

Задание № 3 Результаты работы занести в таблицу по форме:

Форма ē

элемента

Элемент

Валентная

оболочка

Низшая степень окисления

Водородное соединение

Промежуточные степени окисления

Высшая степень окисления

Формула Высшего оксида

Формула гидроксида

Формулы соли

s - элемент

p- элемент

Вывод:

Практическая работа

Вариант 2

Составление электронных формул атомов элементов и графических схем, заполнение их электронами

Ход работы

Задание № 1

Заполнить таблицу:

5. Число электронов N ē

6 . Заряд ядра атома , Z

7. Массовое число, А

8. Число нейтронов, N n 0 = А - N р +

9. Написать распределение электронов по энергетическим уровням

10. Сравнение с элементами соседями:

а) по группе

б) по периоду

11. Формула высшего оксида и гидроксида

Задание № 2

Результаты работы занести в таблицу по форме:

Форма ē

элемента

Элемент

Валентная

оболочка

Низшая степень окисления

Водородное соединение

Промежуточные степени окисления

Высшая степень окисления

Формула Высшего оксида

Формула гидроксида

Формула соли

Вывод:

Практическая работа

Вариант 3

Составление электронных формул атомов элементов и графических схем, заполнение их электронами

Ход работы

Задание № 1

Заполнить таблицу:

5. Число электронов N ē

6 . Заряд ядра атома , Z

7. Массовое число, А

8. Число нейтронов, N n 0 = А - N р +

9. Написать распределение электронов по энергетическим уровням

10. Сравнение с элементами соседями:

а) по группе

б) по периоду

11. Формула высшего оксида и гидроксида

Задание № 2

Результаты работы занести в таблицу по форме:

Форма ē

элемента

Элемент

Валентная

оболочка

Низшая степень окисления

Водородное соединение

Промежуточные степени окисления

Высшая степень окисления

Формула Высшего оксида

Формула гидроксида

Формула соли

Вывод:

Практическая работа

Вариант 4

Составление электронных формул атомов элементов и графических схем, заполнение их электронами

Цель работы:

1) Научиться давать характеристику элементов по положению их в периодической системе

2) Применить знания о строении атома при составлении характеристики атомов химических элементов

3) Записывать электронную формулу элемента

4) Определять формулу и характер высшего оксида и гидроксида; водородного его соединения

5) Давать сравнительную характеристику с соседними элементами в периоде и группе

Ход работы

Задание № 1

Заполнить таблицу:

5. Число электронов N ē

6 . Заряд ядра атома , Z

7. Массовое число, А

8. Число нейтронов, N n 0 = А - N р +

9. Написать распределение электронов по энергетическим уровням

10. Сравнение с элементами соседями:

а) по группе

б) по периоду

11. Формула высшего оксида и гидроксида

Задание № 2

Характеризуя элемент по положению его в периодической системе, указать:

Результаты работы занести в таблицу по форме:

Форма ē

элемента

Элемент

Валентная

оболочка

Низшая степень окисления

Водородное соединение

Промежуточные степени окисления

Высшая степень окисления

Формула Высшего оксида

Формула гидроксида

Формула соли

Вывод:

Практическая работа

Вариант 5

Составление электронных формул атомов элементов и графических схем, заполнение их электронами

Цель работы:

1) Научиться давать характеристику элементов по положению их в периодической системе

2) Применить знания о строении атома при составлении характеристики атомов химических элементов

3) Записывать электронную формулу элемента

4) Определять формулу и характер высшего оксида и гидроксида; водородного его соединения

5) Давать сравнительную характеристику с соседними элементами в периоде и группе

Ход работы

Задание № 1

Заполнить таблицу:

5. Число электронов N ē

6 . Заряд ядра атома , Z

7. Массовое число, А

8. Число нейтронов, N n 0 = А - N р +

9. Написать распределение электронов по энергетическим уровням

10. Сравнение с элементами соседями:

а) по группе

б) по периоду

11. Формула высшего оксида и гидроксида

(кислоты и соли - по примеру азотной и азотистой кислот)

Задание № 2

Результаты работы занести в таблицу по форме:

Форма ē

элемента

Элемент

Валентная

оболочка

Низшая степень окисления

Водородное соединение

Промежуточные степени окисления

Высшая степень окисления

Формула Высшего оксида

Формула гидроксида

Формула соли

Вывод:

Практическая работа

Вариант 6

Составление электронных формул атомов элементов и графических схем, заполнение их электронами

Цель работы:

1) Научиться давать характеристику элементов по положению их в периодической системе

2) Применить знания о строении атома при составлении характеристики атомов химических элементов

3) Записывать электронную формулу элемента

4) Определять формулу и характер высшего оксида и гидроксида; водородного его соединения

5) Давать сравнительную характеристику с соседними элементами в периоде и группе

Ход работы

Задание № 1

Заполнить таблицу:

5. Число электронов N ē

6 . Заряд ядра атома , Z

7. Массовое число, А

8. Число нейтронов, N n 0 = А - N р +

9. Написать распределение электронов по энергетическим уровням

10. Сравнение с элементами соседями:

а) по группе

б) по периоду

11. Формула высшего оксида и гидроксида

(кислоты и соли - по примеру S )

Задание № 2

Результаты работы занести в таблицу по форме:

Форма ē

элемента

Элемент

Валентная

оболочка

Низшая степень окисления

Водородное соединение

Промежуточные степени окисления

Высшая степень окисления

Формула Высшего оксида

Формула гидроксида

Формула соли

Вывод:

Практическая работа

Вариант 7

Составление электронных формул атомов элементов и графических схем, заполнение их электронами

Цель работы:

1) Научиться давать характеристику элементов по положению их в периодической системе

2) Применить знания о строении атома при составлении характеристики атомов химических элементов

3) Записывать электронную формулу элемента

4) Определять формулу и характер высшего оксида и гидроксида; водородного его соединения

5) Давать сравнительную характеристику с соседними элементами в периоде и группе

Ход работы

Задание № 1

Заполнить таблицу:

5. Число электронов N ē

6 . Заряд ядра атома , Z

7. Массовое число, А

8. Число нейтронов, N n 0 = А - N р +

9. Написать распределение электронов по энергетическим уровням

10. Сравнение с элементами соседями:

а) по группе

б) по периоду

11. Формула высшего оксида и гидроксида

(кислоты и соли - по примеру S )

Задание № 2

Характеризуя элемент по положению его в периодической системе, указать:

Результаты работы занести в таблицу по форме:

Форма ē

элемента

Элемент

Валентная

оболочка

Низшая степень окисления

Водородное соединение

Промежуточные степени окисления

Высшая степень окисления

Формула Высшего оксида

Формула гидроксида

Формула соли

Вывод:

Практическая работа

Вариант 8

Составление электронных формул атомов элементов и графических схем, заполнение их электронами

Цель работы:

1) Научиться давать характеристику элементов по положению их в периодической системе

2) Применить знания о строении атома при составлении характеристики атомов химических элементов

3) Записывать электронную формулу элемента

4) Определять формулу и характер высшего оксида и гидроксида; водородного его соединения

5) Давать сравнительную характеристику с соседними элементами в периоде и группе

Ход работы

Задание № 1

Заполнить таблицу:

5. Число электронов N ē

6 . Заряд ядра атома , Z

7. Массовое число, А

8. Число нейтронов, N n 0 = А - N р +

9. Написать распределение электронов по энергетическим уровням

10. Сравнение с элементами соседями:

а) по группе

б) по периоду

11. Формула высшего оксида и гидроксида

(кислота - борная, соли - бораты)

Задание № 2

Характеризуя элемент по положению его в периодической системе, указать:

Результаты работы занести в таблицу по форме:

Форма ē

элемента

Элемент

Валентная

оболочка

Низшая степень окисления

Водородное соединение

Промежуточные степени окисления

Высшая степень окисления

Формула Высшего оксида

Формула гидроксида

Формула соли

Вывод:

Атом – электронейтральная система, состоящая из положительно заряженного ядра и отрицательно заряженных электронов. Электроны располагаются в атоме, образуя энергетические уровни и подуровни.

Электронная формула атома – это распределение электронов в атоме по энергетическим уровням и подуровням в соответствии с принципом наименьшей энергии (Клечковского), принципом Паули, правилом Гунда.

Состояние электрона в атоме описывается с помощью квантово-механической модели – электронного облака, плотность соответствующих участков которого пропорциональна вероятности нахождения электрона. Обычно под электронным облаком понимают область околоядерного пространства, которая охватывает примерно 90% электронного облака. Эта область пространства называется также орбиталью.

Атомные орбитали образуют энергетический подуровень. Орбиталям и подуровням присвоены буквенные обозначения. Каждый подуровень имеет определенное число атомных орбиталей. Если атомную орбиталь изобразить в виде магнитно-квантовой ячейки, то атомные орбитали, находящиеся на подуровнях, можно представить следующим образом:

На каждой атомной орбитали могут находиться одновременно не более двух электронов, различающихся спином (принцип Паули). Это различие обозначается стрелками ¯­. Зная, что на s -подуровне одна s -орбиталь, на р -подуровне три р -орбитали, на d -подуровне пять d -орбиталей, на f -подуровне семь f- орбиталей, можно найти максимальное количество электронов на каждом подуровне и уровне. Так, на s -подуровне, начиная с первого энергетического уровня, 2 электрона; на р -подуровне, начиная со второго энергетического уровня, 6 электронов; на d -подуровне, начиная с третьего энергетического уровня, 10 электронов; на f -подуровне, начиная с четвертого энергетического уровня, 14 электронов. Электроны на s-, p-, d-, f- подуровнях называются соответственно s-, р-, d-, f -электронами.

Согласно принципу наименьшей энергии , последовательное заполнение энергетических подуровней электронами происходит таким образом, что каждый электрон в атоме занимает подуровень с наиболее низкой энергией, отвечающей его прочной связи с ядром. Изменение энергии подуровней может быть представлено в виде ряда Клечковского или шкалы энергии:



1s <2s <2p <3s <3p <4s <3d <4p <5s <4d <5p <6s <4f <5d <6p <7s <5f <6d <7p ...

Согласно правилу Гунда, каждая квантовая ячейка (орбиталь) энергетического подуровня сначала заполняется одиночными электронами с одинаковым спином, а затем – вторым электроном с противоположным спином. Два электрона с противоположным спином, находящиеся на одной атомной орбитали, называют спаренными. Одиночные электроны – неспаренные.

Пример 1. Разместите 7 электронов на d -подуровне с учётом правила Гунда.

Решение. На d -подуровне – пять атомных орбиталей. Энергия орбиталей, находящихся на одном и том же подуровне, одинаковая. Тогда d -подуровень можно представить так: d . После заполнения электронами атомных орбиталей с учётом правила Гунда d -подуровень будет иметь вид .

Используя теперь представления о принципах наименьшей энергии и Паули, распределим электроны в атомах по энергетическим уровням (табл. 1).

Таблица 1

Распределение электронов по энергетическим уровням атомов

Используя данную схему, можно объяснить формирование электронных структур атомов элементов периодической системы, записанных в виде электронных формул. Общее число электронов в атоме определяется порядковым номером элемента.

Так, в атомах элементов первого периода будет заполняться электронами одна s -орбиталь первого энергетического уровня (табл. 1). Так как на этом уровне два электрона, то в первом периоде только два элемента (1 H и 2 He), электронные формулы которых следующие: 1 H 1s 1 и 2 Не 1s 2 .

В атомах элементов второго периодапервый энергетический уровень полностью заполнен электронами. Последовательно будут заполняться электронами s - и р -подуровни второго энергетического уровня. Сумма s - и р -электронов, заполнивших этот уровень, равна восьми, поэтому во втором периоде 8 элементов (3 Li… 10 nе).

В атомах элементов третьего периода первый и второй энергетические уровни полностью заполнены электронами. Последовательно будут заполняться s - и р -подуровни третьего энергетического уровня. Сумма s - и р -электронов, заполнивших третий энергетический уровень, равна восьми. Поэтому в третьем периоде 8 элементов (11 Na… 18 Аr).

В атомах элементов четвертого периода заполнены первый, второй и третий 3s 2 3р 6 энергетические уровни. На третьем энергетическом уровне свободным остается d -подуровень (3d ). Заполнение этого подуровня электронами от одного до десяти начинается после того, как заполнится максимально электронами 4s -подуровень. Далее размещение электронов происходит на 4р -подуровне. Сумма 4s -, 3d - и 4р-электронов равна восемнадцати, что соответствует 18 элементам четвертого периода(19 К… 36 Кr).

Аналогично происходит формирование электроных структур атомов элементов пятого периода с той лишь разницей, что s - и р -подуровни находятся на пятом, а d -подуровень на четвертом энергетическом уровнях. Так как сумма 5s -, 4d - и 5р -электронов равна восемнадцати, то в пятом периоде 18 элементов (37 Rb… 54 Xе).

В сверхбольшом шестом периоде 32 элемента (55 Cs… 86 Rn). Это число соответствует сумме электронов на 6s -, 4f -, 5d - и 6р -подуровнях. Последовательность заполнения подуровней электронами такова. Сначала заполняется электронами 6s -подуровень. Затем, вопреки ряду Клечковского, заполнится одним электроном 5d -подуровень. После этого максимально заполнится 4f -подуровень. Далее будут заполняться 5d - и 6р -подуровни. Предыдущие энергетические уровни заполнены электронами.

Аналогичное явление наблюдается при формировании электронных структур атомов элементов седьмого периода.

Таким образом, чтобы написать электронную формулу атома элемента необходимо знать следующее.

1. Порядковый номер элемента в периодической системе элементов Д.И. Менделеева, соответствующий общему числу электронов в атоме.

2. Номер периода, который определяет общее число энергетических уровней в атоме. При этом номер последнего энергетического уровня в атоме соответствует номеру периода, в котором находится элемент. В атомах элементов второго и третьего периодов заполнение электронами последнего энергетического уровня происходит в такой последовательности: ns 1–2 … 1–6 . В атомах элементов третьего и четвертого периодов подуровни последнего и предпоследнего энергетических уровней заполняются электронами так: ns 1–2 …(n –1)d 1–10 … 1–6 . В атомах элементов шестого и седьмого периодов последовательность заполнения электронами подуровней такая: ns 1–2 …(n –1)d 1 …(n -2)f 1–14 …(n –1)d 2–10 … 1–6 .

3. В атомах элементов главных подгрупп сумма s - и р -электронов на последнем энергетическом уровне равна номеру группы.

4. В атомах элементов побочных подгрупп сумма d -электронов на предпоследнем и s -электронов на последнем энергетических уровнях равна номеру группы, кроме атомов элементов подгрупп кобальта, никеля, меди и цинка.

Размещение электронов в атомных орбиталях одного и того же энергетического подуровня происходит в соответствии с правилом Гунда :суммарное значение спина электронов, находящихся на одном и том же подуровне, должно быть максимальным, т.е. данный подуровень на каждую орбиталь вначале принимает по одному электрону с параллельными спинами, а затем – второй электрон с противоположным спином.

Пример 2 . Напишите электронные формулы атомов элементов, имеющих порядковые номера 4, 13, 22.

Решение. Элемент с порядковым номером 4 – бериллий. Следовательно, в атоме бериллия 4 электрона. Бериллий находится во втором периоде, во второй группе главной подгруппы. Номер периода соответствует числу энергетических уровней, т.е. двум. На этих энергетических уровнях должны размещаться четыре электрона. На первом энергетическом уровне два электрона (1s 2) и на втором тоже два электрона (2s 2) (см. табл 1). Таким образом, электронная формула имеет следующий вид: 4 Ве 1s 2 2s 2 . Число электронов на последнем энергетическом уровне соответствует номеру группы, в которой он находится.

В периодической системе порядковому номеру 13 соответствует элемент алюминий. Алюминий находится в третьем периоде, в третьей группе, вглавной подгруппе. Следовательно, на третьем энергетическом уровне должны находиться три электрона, которые разместятся таким образом: 3s 2 3р 1 (сумма s - и р -электронов равна номеру группы). Десять электронов находятся на первом и втором энергетических уровнях: 1s 2 2s 2 2p 6 (см. табл. 1). В целом электронная формула алюминия следующая: 13 Al 1s 2 2s 2 2p 6 3s 2 3p 1 .

В периодической системе элемент с порядковым номером 22 – титан. В атоме титана двадцать два электрона. Размещаются они на четырех энергетических уровнях, так как элемент находится в четвертом периоде. При размещении электронов по подуровням необходимо учесть, что это – элемент четвертой группы побочной подгруппы. Поэтому на четвёртом энергетическом уровне, s -подуровне находятся два электрона: 4s 2 . Первый, второй, третий уровни s - и р -подуровни полностью заполнены электронами 1s 2 2s 2 2p 6 3s 2 3p 6 (см. табл. 1). Оставшиеся два электрона разместятся на d -подуровне третьего энергетического уровня: 3d 2 . В целом электронная формула титана такая: 22 Тi 1s 2 2s 2 2p 6 3s 2 3p 6 3d 2 4s 2 .

Проскок» электронов

При написании электронных формул следует учитывать «проскок» электронов с s -подуровня внешнего энергетического уровня ns на d -подуровень предвнешнего уровня (n – 1)d . Предполагают, что такое состояние наиболее энергетически выгодно. «Проскок» электрона происходит в атомах некоторых d -элементов, например, 24 Сr, 29 Cu, 42 Mo, 47 Ag, 79 Au, 41 Nb, 44 Ru, 45 Rh, 46 Pd.

Пример 3 . Напишите электронную формулу атома хрома с учётом «проскока» одного электрона.

Решение. Электронная формула хрома, согласно принципу минимальной энергии, должна быть такой: 24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 4s 2 . Однако, в атоме этого элемента наблюдается «проскок» одного s -электрона с внешнего 4s -подуровня на подуровень 3d . Поэтому расположение электронов в атоме хрома такое: 24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 .

Понравилась статья? Поделитесь ей