Контакты

Типы машиностроительных производств и методы работы. Реферат на тему “Производственный и технологический процессы в машиностроении”

В зависимости от размера производственной программы, характера продукции, а также технических и экономических условий осуществления производственного процесса различают три основных типа производства: единичное, серийное, массовое.

Необходимо отметить, что на одном и том же предприятии и даже в одном и том же цехе могут существовать различные типы производства. Например, в тяжелом машиностроении, имеющем характер единичного производства, мелкие детали, требующиеся в большом количестве, могут изготавливаться по принципу серийного или даже массового производства.

Единичным (индивидуальным) называется такое производство, при котором изделия изготавливают единичными экземплярами, разнообразными по конструкции или размерам, причем повторяемость этих изделий редка или совсем отсутствует.

Единичное производство универсально , т.е. охватывает различные типы изделий, а следовательно, должно быть гибким, быстро — переналаживаемым.

Технологический процесс изготовления деталей при этом типе производства имеет «уплотненный» характер: на одном станке выполняются несколько операций и часто производится полная обработка заготовок разнообразных конструкций и из различных материалов.

Для единичного производства характерны следующие особенности:

оборудование ставится по типам станков;

используется универсальное оборудование;

обслуживающий персонал высокой квалификации;

длительное время обработки;

высокая стоимость обработки;

низкая производительность;

высокая точность обработки.

Серийным называется производство, в котором выпуск изделий осуществляется партиями или сериями, состоящими из одноименных, однотипных по конструкции и одинаковых по размерам изделий, запускаемых в производство одновременно. Основным принципом этого вида производства является изготовление всей партии целиком как в обработке деталей, так и в сборке.

При серийном производстве изделия выпускаются повторяющимися сериями по неизменным чертежам. В зависимости от числа выпускаемых изделий и их повторяемости в течение года производство может быть мелко-, средне- или крупносерийным. Мелкосерийное производство приближается по организации к единичному, а крупносерийное - к массовому.

Отнесение серийного производства к тому или иному типу осуществляется на основании коэффициента закрепления операций - отношения числа всех технологических операций, выполненных или подлежащих выполнению в течение месяца, к числу рабочих мест. Для мелкосерийного производства значения этого коэффициента находятся в пределах 20…40, для серийного - 10… 20, для крупносерийного - I… 10 включительно.

В серийном производстве технологический процесс дифференцирован. Отдельные операции закреплены за определенными станками. Используются станки универсальные, специализированные, специальные, автоматизированные, агрегатные. После окончания изготовления одной серии деталей станки на данном производственном участке переналаживают на изготовление другой серии деталей.

Серийное производство значительно экономичнее , чем единичное, так как лучше используется оборудование, выше специализация рабочих, ниже себестоимость продукции.

Массовым называется производство , в котором при достаточно большом числе одинаковых выпусков изделий изготовление ведется путем непрерывного выполнения на рабочих местах одних и тех же постоянно повторяющихся операций.

Для массового производства характерны следующие основные признаки:

большинство операций по обработке заготовок закрепляется за отдельными станками;

на линии обработки имеет место непрерывное перемещение заготовок с одного рабочего места на другое;

оборудование специализированное или специальное;

низкая трудоемкость и стоимость обработки;

короткий технологический цикл.

Коэффициент закрепления операций в этом типе производства принимают равным единице. Массовое производство позволяет производить значительные затраты на оборудование, так как последнее легко окупается.

При массовом производстве имеется возможность использовать самое высокопроизводительное оборудование и технологическую оснастку. Массовое производство может быть организовано по поточному и непоточному методам. Оборудование в этом случае устанавливается в виде поточных автоматических или автоматизированных линий.

Высшей формой массового производства является производство непрерывным потоком, характеризуемое тем, что время выполнения каждой операции равно или кратно времени по всему потоку, что позволяет производить обработку без заделов с определенным тактом выпуска, который рассчитывается по формуле

где Р - фонд времени (за год, смену и т.д.), мин; N - выпуск изделий сборочных единиц за соответствующий период времени, шт.

На операциях, длительность которых не укладывается в определенный такт выпуска, устанавливается дополнительное оборудование. При непрерывном потоке передача заготовки с позиции на позицию осуществляется непрерывно в принудительном порядке, что обеспечивает параллельное одновременное выполнение всех операций на технологической линии.

1. Обоснование выбора заготовки

2. Разработка маршрута обработки детали

3. Выбор технологического оборудования и инструмента

4. Определение промежуточных припусков, допусков и размеров

4.1 Табличным методом на все поверхности

4.2 Аналитическим методом на один переход или на одну операцию

5. Назначение режимов резания

5.1 Назначение режимов резания аналитическим методом на одну операцию

5.2 Табличным методом на остальные операции

6. Компоновка станочного приспособления на одну из операций механической обработки

7. Расчет приспособления на точность механической обработки

Литература

1. Обоснование выбора заготовки

Оптимальный метод получения заготовки подбирают в зависимости от ряда факторов: материала детали, технических требований по ее изготовлению, объема и серийности выпуска, формы поверхностей и размеров деталей. Метод получения заготовки, обеспечивающий технологичность и минимальную себестоимость считается оптимальным.

В машиностроении для получения заготовок наиболее широко применяют следующие методы:

обработку металлов давлением;

комбинации этих методов.

Каждый из вышеперечисленных методов содержит большое число способов получения заготовок.

В качестве метода получения заготовки принимаем обработку металла давлением. Выбор обоснован тем, что материалом детали является конструкционная сталь 40Х. Дополнительным фактором, определяющим выбор заготовки, является сложность конфигурации детали и тип производства (условно принимаем что деталь изготавливается в условиях серийного производства. Принимаем штамповку на горизонтально-ковочных машинах.

Данный тип штамповок позволяет получать заготовки минимальной массой 0,1 кг, 17-18 квалитета точности с шероховатостью 160-320 мкм в условиях мелкосерийного производства.

заготовка машиностроение маршрут деталь

2. Разработка маршрута обработки детали

Маршрут обработки детали:

Операция 005. Заготовительная. Штамповка на КГШП.

Заготовительный цех.

Операция 010. Фрезерная.

Сверлильно-фрезерно-расточной станок 2254ВМФ4.

Фрезеровать плоскость, выдерживая размер 7.

2. Сверлить 2 отверстия D 12,5.

Зенкеровать отверстие D 26,1.

Зенкеровать отверстие D32.

Зенкеровать отверстие D35,6.

Развернуть отверстие D36.

Зенковать фаску 0,5 х 45 0 .

Операция 015. Токарная.

Токарно-винторезный 16К20.

Подрезать торец, выдерживая размер 152.

2. Точить поверхность D37, выдерживая размер 116.

Точить 2 фаски 2 х 45 0 .

Нарезать резьбу М30х2.


Операция 020. Фрезерная

Вертикально-фрезерный 6Р11.

Фрезеровать поверхность, выдерживая размеры 20 и 94.


Операция 025. Вертикально-сверлильная.

Вертикально-сверлильный 2Н125.

Установ 1.

Сверлить 2 отверстия D9.

2. Сверлиль отверстие D8,5.

Нарезать резьбу К1/8 / .

Установ 2.

Сверлить отверстие D21.

Сверлить отверстие D29.


Операция 030 Слесарная.

Притупить острые кромки.

Операция 035. Технический контроль.

3. Выбор технологического оборудования и инструмента

Для изготовления детали "Наконечник" подбираем следующие станки

1. Сверлильно-фрезерно-расточной станок с ЧПУ и инструментальным магазином 2254ВМФ4;

2. Токарно-винторезный станок 16К20;

Вертикально-фрезерный станок 6Р11;

Вертикально-сверлильный станок 2Н125.

В качестве станочных приспособлений используем: для токарной-операции - 4-х кулачковый патрон, для остальных операций - специальные приспособления.

При изготовлении данной детали используется следующий режущий инструмент:

Фреза торцевая с механическим креплением многогранных пластин: фреза 2214-0386 ГОСТ 26595-85 Z = 8, D = 100 мм.

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 9 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0023 ГОСТ 10903-77.

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 12,5 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0040 ГОСТ 10903-77.

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 21 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0073 ГОСТ 10903-77.

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 29 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0100 ГОСТ 10903-77.

Зенкер цельный с коническим хвостовиком из быстрорежущей стали, диаметром D = 26 мм. длиной 286 мм для обработки сквозного отверстия. Обозначение: 2323-2596 ГОСТ 12489-71.

Зенкер цельный с коническим хвостовиком из быстрорежущей стали, диаметром D = 32 мм. длиной 334 мм. для обработки глухого отверстия. Обозначение: 2323-0555 ГОСТ 12489-71.

Зенкер цельный с коническим хвостовиком из быстрорежущей стали, диаметром D = 35,6 мм. длиной 334 мм. для обработки глухого отверстия. Обозначение: 2323-0558 ГОСТ 12489-71.

Развертка машинная цельная с коническим хвостовиком D36 мм. длиной 325 мм. Обозначение: 2363-3502 ГОСТ 1672-82.

Зенковка коническая типа 10, диаметром D = 80 мм. с углом при вершине 90. Обозначение: Зенковка 2353-0126 ГОСТ 14953-80.

Резец правый проходной упорный отогнутый с углом в плане 90 o типа 1, сечения 20 х 12. Обозначение: Резец 2101-0565 ГОСТ 18870-73.

Резец токарный резьбовой с пластинкой из быстрорежущей стали для метрической резьбы с шагом 3 типа 1, сечения 20 х 12.

Обозначение: 2660-2503 2 ГОСТ 18876-73.

Метчик машинный 2621-1509 ГОСТ 3266-81.

Для контроля размеров данной детали, применяем следующий мерительный инструмент:

Штангенциркуль ШЦ-I-125-0,1 ГОСТ 166-89;

Штангенциркуль ШЦ-II-400-0,05 ГОСТ 166-89.

Для контроля размера отверстия D36 используем калибр - пробку.

Набор образцов шероховатости 0,2 - 0,8 ШЦВ ГОСТ 9378 - 93.

4. Определение промежуточных припусков, допусков и размеров

4.1 Табличным методом на все поверхности

Необходимые припуски и допуски на обрабатываемые поверхности выбираем по ГОСТ 1855-55.

Припуски на механическую обработку детали "Наконечник"

Размер, мм.

Шерохова-тость, мкм.

Припуск, мм.

Допуск на размер, мм

Размер с учетом припуска, мм.

Черновая 8 Получистовая 1,5 Чистовая 0,5

Черновая 3,0 Чистовая 3,0





4.2 Аналитическим методом на один переход или на одну операцию

Расчет припусков аналитическим методом производим для поверхности Шероховатость Ra5.

Технологический маршрут обработки отверстия состоит из зенкерования, чернового и чистового развертывания

Технологический маршрут обработки отверстия состоит из зенкерования и чернового, чистового развертывания.

Расчет припусков производим по следующей формуле:

где R - высота неровностей профиля на предшествующем переходе;

Глубина дефектного слоя на предшествующем переходе;

Суммарные отклонения расположения поверхности (отклонения от параллельности, перпендикулярности, соосности, симметричности, пересечения осей, позиционное) на предшествующем переходе;

Погрешность установки на выполняемом переходе.

Высоту микронеровностей R и глубину дефектного слоя для каждого перехода находим в таблице методического пособия.

Суммарное значение , характеризующее качество поверхности штампованных заготовок составляет 800 мкм. R= 100 мкм; = 100 мкм; R= 20 мкм; = 20 мкм;

Суммарное значение пространственных отклонений оси обрабатываемого отверстия относительно оси центра определится по формуле:

, (2)

где - смещение обрабатываемой поверхности относительно поверхности используемой в качестве технологической базы при зенкеровании отверстий, мкм

(3)

где - допуск на размер 20 мм. = 1200 мкм.

Допуск на размер 156,2 мм. = 1600 мм.

Величину коробления отверстия следует учитывать как в диаметральном, так и в осевом сечении.

где - величина удельного коробления для поковок. = 0,7, и L - диаметр и длина обрабатываемого отверстия. = 20 мм, L = 156,2 мм.

мкм.

Величина остаточного пространственного отклонения после зенкерования:

Р 2 = 0,05 Р = 0,05 1006 = 50 мкм.

Величина остаточного пространственного отклонения после чернового развертывания:

Р 3 = 0,04 Р = 0,005 1006 = 4 мкм.

Величина остаточного пространственного отклонения после чистового развертывания:

Р 4 = 0,002 Р = 0,002 1006 = 2 мкм.

Остаточная погрешность при черновом развертывании:

0,05 ∙ 150 = 7 мкм.

Остаточная погрешность при чистовом развертывании:

0,04 ∙ 150 = 6 мкм.

Производим расчет минимальных значений межоперационных припусков: зенкерование.

Черновое развертывание:

Чистовое развертывание:

Наибольший предельный размер по переходам определяем последовательным вычитанием от чертежного размера минимального припуска каждого технологического перехода.

Наибольший диаметр детали: d Р4 = 36,25 мм.

Для чистового развертывания: d Р3 = 36,25 - 0,094 =36,156 мм.

Для чернового развертывания: d Р2 = 35,156 - 0,501 = 35,655 мм.

Для зенкерования:

Р1 = 35,655 - 3,63 = 32,025 мм.

Значения допусков каждого технологического перехода и заготовки принимаем по таблицам в соответствии с квалитетом, используемого метода обработки.

Квалитет после чистового развертывания: ;

Квалитет после чернового развертывания: H12;

Квалитет после зенкерования: H14;

Квалитет заготовки: .

Наименьшие предельные размеры определяем вычетанием допусков от наибольших предельных размеров:

MIN4 = 36,25 - 0,023 = 36,02 мм. MIN3 = 36,156 - 0,25 = 35,906 мм. MIN2 = 35,655 - 0,62 = 35,035 мм. MIN1 = 32,025 - 1,2 = 30,825 мм.

Максимальные предельные значения припусков Z ПР. МАХ равны разности наименьших предельных размеров. А минимальные значения Z ПР. МIN соответственно разности наибольших предельных размеров предшествующего и выполняемого переходов.

ПР. МIN3 = 35,655 - 32,025 = 3,63 мм. ПР. МIN2 = 36,156 - 35,655 = 0,501 мм. ПР. МIN1 = 36,25 - 36,156 = 0,094 мм. ПР. МAX3 = 35,035 - 30,825 = 4,21 мм. ПР. МAX2 = 35,906 - 35,035 = 0,871 мм. ПР. МAX1 = 36,02 - 35,906 = 0,114 мм.

Общие припуски Z О. МАХ и Z О. МIN определяем, суммируя промежуточные припуски.

О. МAX = 4,21 + 0,871 + 0,114 = 5, 195 мм. О. МIN = 3,63 + 0,501 + 0,094 = 4,221 мм.

Полученные данные сводим в результирующую таблицу.

Технологические переходы обработки поверхности Элементы припуска

Расчетный припуск , мкм. Допуск δ, мкмПредельный размер, мм. Предельные значения припусков, мкм









Заготовка




Зенкерование

Развертывание черновое

Развертывание чистовое














Окончательно получаем размеры:

Заготовки: d ЗАГ. =;

После зенкерования: d 2 = 35,035 +0,62 мм.

После чернового развертывания: d 3 = 35,906 +0,25 мм.

После чистового развертывания: d 4 = мм.

Диаметры режущих инструментов отображены в пункте 3.

5. Назначение режимов резания

5.1 Назначение режимов резания аналитическим методом на одну операцию

Фрезерная операция. Фрезеровать плоскость, выдерживая размер 7 мм.

а) Глубина резания. При фрезеровании торцевой фрезой глубина резания определяется в направлении параллельном оси фрезы и равна припуску на обработку. t =2,1 мм.

б) Ширина фрезерования определяется в направлении, перпендикулярном к оси фрезы. В = 68 мм.

в) Подача. При фрезеровании различают подачу на зуб, подачу на один оборот и подачу минутную.

где n - частота вращения фрезы, об/мин;- число зубьев фрезы.

При мощности станка N = 6,3 кВт S = 0,14.0,28 мм/зуб.

Принимаем S = 0,18 мм/зуб.

Мм/об.

в) Скорость резания.

(6)

Где Т - период стойкости. В данном случае Т = 180 мин. - общий поправочный коэффициент

Коэффициент учитывающий обрабатываемый материал.

nV (8) НВ = 170; nV = 1,25 (1; с.262; табл.2)

1,25 =1,15

Коэффициент, учитывающий материал инструмента; = 1

(1; с.263; табл.5)

Коэффициент, учитывающий состояние поверхности заготовки; = 0,8 (1; с.263; табл.6)

V = 445; Q = 0,2; х = 0,15; y = 0,35; u = 0,2; P = 0; m = 0,32 (1; с.288; табл.39)

М/мин.

г) Частота вращения шпинделя.

(9) n об/мин.

Корректируем по паспорту станка: n = 400 об/мин.

Мм/мин.

д) Фактическая скорость резания

м/мин.

е) Окружная сила.

(11)

где n = 0,3 (1; с.264; табл.) 0,3 = 0,97

С P =54,5; Х = 0,9; Y = 0,74; U = 1; Q = 1; W = 0.

5.2 Табличным методом на остальные операции

Назначение режимов резания табличным методом произоводится согласно справочнику режимов резания металлов. Полученные данные вносим в результирующую таблицу.

Режимы резания на все поверхности.

Наименование операции и перехода

Габаритный размер

Глубина резания, мм.

Подача, мм/об. (мм/мин)

Скорость резания, м/мин

Частота вращения шпинделя, об/мин.






Операция 010 Фрезерная







1. Фрезеровать поверхность, выдерживая размер 7

2. Сверлить 2 отверстия 12,512,576,250,0815,7400







3. Зенкеровать отверстие 26,1. 26,11523,050,0820,49250







4. Зенкеровать отверстие 32. 321122,950,0825,12250







5. Зенкеровать отверстие 35,635,6921,80,0817,89160

7. Зенковать фаску 0,5 х 45 o

Операция 015 Токарная







1. Подрезать торец, выдерживая размер 152

2. Точить поверхность D37, выдерживая размер 116

3. Нарезать резьбу М30х2

Операция 020 Фрезерная







Фрезеровать поверхность, выдерживая размеры 20 и 94

Операция 025 Вертикально-сверлильная







1. Сверлить 2 отверстия 995,54,50,0811,3400

Проектируем станочное приспособление для вертикально-сверлильного и вертикально-фрезерных станков.

Приспособление представляет собой плиту (поз 1.) на которую с помощью штифтов (поз.8) и винтов (поз.7) монтируются 2 призмы (поз.10). Со стороны одной из призм расположен упор (поз.3) с расположенным в нем пальцем, служащим для базирования заготовки. Прижим детали обеспечивается за счет планки (поз 3), которая одним краем свободно вращается вокруг винта (поз.5), а в другой ее край, имеющий форму прорези, входит винт с последующим прижимом гайкой (поз.12).

Для фиксации приспособления на столе станка в теле плиты выполнены проушены и вмонтированы 2 шпонки (поз.13), служащие для центрования приспособления. Транспортировка осуществляется в ручную.

7. Расчет приспособления на точность механической обработки

При расчете точности приспособления необходимо определить допускаемую величину погрешности ε = 0,3…0,5; принимаем = 0,3;

Остальные значения формулы представляют собой совокупность погрешностей, определяемых ниже.

Погрешность базирования e б возникает при несовпадении измерительной и технологической баз. При обработке отверстия погрешность базирования равна нулю.

Погрешность закрепления заготовки ε з возникает в результате действия сил зажима. Погрешность закрепления при использовании ручных винтовых зажимов равна 25 мкм.

Погрешность установки приспособления на станке зависит от зазоров между присоединительными элементами приспособления и станка, а также от неточности изготовления присоединительных элементов. Она равна зазору между Т-образным пазом стола и установочным элементом. В используемом приспособлении размер ширины паза равна 18H7 мм. Размер установочной шпонки 18h6. Предельные отклонения размеров U

Б.А. Кузьмин, Ю.Е. Абраменко, М.А. Кудрявцев, В.Н. Евсеев, В.Н. Кузьминцев; Технология металлов и конструкционные материалы; - М.: "Машиностроение"; 2003 г.

А.Ф. Горбацевич, В.А. Шкред; Курсовое проектирование по технологии машиностроения; - М.: "Машиностроение"; 1995 г.

В.Д. Мягков; Допуски и посадки. Справочник; - М.: "Машиностроение"; 2002 г.

В.И. Яковлева; Общемашиностроительные нормативы режимов резания; 2-е издание; - М.: "Машиностроение"; 2000 г.

В.М. Виноградов; Технология машиностроения: введение в специальность; - М.: "Академия"; 2006 г.;

В машиностроении различают три типа производств: массовое, серийное и единичное и два метода работы: поточный и непоточный .

Массовое производство характеризуется узкой номенклатурой и большим объемом выпуска изделий, непрерывно изготовляемых в течение продолжительного времени. Основным признаком массового производства является не только количество выпускаемых изделий, но и выполнение на большинстве рабочих мест одной закрепленной за ними постоянно повторяющейся операции.

Программа выпуска в массовом производстве обусловливает возможность узкой специализации рабочих мест и расположения оборудования по ходу технологического процесса в виде поточных линий. Длительность операций на всех рабочих местах одинакова или кратна по времени и соответствует заданной производительности.

Такт выпуска — интервал времени, через который периодически производится выпуск изделий. Он существенно влияет на построение технологического процесса, поскольку необходимо привести время каждой операции ко времени, равному или кратному такту, что достигается соответствующим расчленением технологического процесса на операции или дублированием оборудования для получения необходимой производительности.

Во избежание перебоев в работе поточной линии на рабочих местах предусматриваются межоперационные запасы (заделы) заготовок или деталей. Заделы обеспечивают непрерывность выпуска продукции при непредусмотренной остановке -отдельного оборудования.

Поточная организация производства обеспечивает значительное сокращение технологического цикла, межоперационных заде-, лов и незавершенного производства, возможность применения высокопроизводительного оборудования и резкое снижение трудоемкости и себестоимости изделий, простоту планирования и управления производством, возможность комплексной автоматизации производственных процессов. При поточных методах работы уменьшаются оборотные фонды и значительно повышается оборачиваемость вложенных в производство средств.

Серийное производство характеризуется ограниченной номенклатурой изделий, изготовляемых периодически повторяющимися партиями, и большим объемом выпуска.

В крупносерийном производстве широко применяют оборудование специального назначения и агрегатные станки. Оборудование располагается не по типам станков, а по изготовляемым предметам и в ряде случаев в соответствии с выполняемым технологическим процессом.

Среднесерийное производство занимает промежуточное положение между крупно- и мелкосерийным. На размер партии в серийном производстве влияют годовой выпуск изделий, длительность процесса обработки и наладки технологического оборудования. В мелкосерийном производстве размер партии обычно составляет несколько единиц, в среднесерийном — несколько десятков, в крупносерийном — несколько сотен деталей. В электромашиностроении и аппаратостроении слово «серия» имеет два значения, которые следует различать: ряд машин возрастающей мощности одного и того же назначения и количество одновременно запускаемых в производство однотипных машин или аппаратов. Мелкосерийное производство по своим технологическим особенностям приближается к единичному.

Единичное производство характеризуется широкой номенклатурой изготовляемых изделий и малым объемом их выпуска. Характерным признаком единичного производства является осуществление на рабочих местах различных операций. Продукция единичного производства — машины и аппараты, которые изготовляются по отдельным заказам, предусматривающим выполнение специальных требований. К ним относят также опытные образцы.

В единичном производстве выпускаются электрические машины и аппараты широкой номенклатуры в относительно малых количествах и часто в единичном экземпляре, поэтому оно должно быть универсальным и гибким для выполнения различных заданий. При единичном производстве применяют быстропереналаживаемое оборудование, которое позволяет переходить с изготовления одной продукции на другую с минимальной потерей времени. К такому оборудованию относят станки с программным управлением, автоматизированные склады, управляемые ЭВМ, гибкие автоматизированные ячейки, участки и т. д.

Универсальное оборудование в единичном производстве используют только на предприятиях, построенных ранее.

Некоторые технологические методы, возникшие в поточно-массовом производстве, применяют не только в серийном, но и единичном производстве. Этому способствуют унификация и стандартизация изделий, специализация производства.

Сборка электрических машин и аппаратов — заключительный технологический процесс, при котором отдельные детали и сборочные единицы соединяются в готовое изделие. Основными организационными формами сборки являются стационарная и подвижная.

При стационарной сборке изделие полностью собирается на одном рабочем месте. Все детали и узлы, требуемые для сборки, поступают на рабочее место. Эту сборку применяют в единичном и серийном производстве и выполняют концентрированным или дифференцированным способом. При концентрированном способе сборочный процесс не расчленяется на операции и всю сборку (от начала до конца) выполняет рабочий или бригада, а при дифференцированном способе сборочный процесс расчленяется на операции, каждую из которых выполняет рабочий или бригада.

При подвижной сборке изделие перемещается от одного рабочего места к другому. Рабочие места оснащены необходимым сборочным инструментом и приспособлениями; на каждом из них, выполняется одна операция. Подвижная форма сборки применяется в крупносерийном и массовом производстве и осуществляется только дифференцированным способом. Такая форма сборки более прогрессивна, поскольку позволяет специализировать сборщиков на определенных операциях, в результате чего повышается производительность труда.

В процессе производства объект сборки должен последовательно переходить от одного рабочего места к другому по потоку (такое движение собираемого изделия обычно осуществляется конвейерами). Непрерывность процесса при поточной сборке достигается благодаря равенству или кратности времени выполнения операций на всех рабочих местах линии сборки, т. е. длительность любой сборочной операции на линии сборки должна быть равна или кратна такту выпуска.

Такт сборки на конвейере является планирующим началом для организации работы не только сборочного, но и всех заготовительных и вспомогательных цехов завода.

При широкой номенклатуре и небольших количествах выпускаемых изделий необходимы частые перенастройки оборудования, которые снижают его производительность. Для снижения трудоемкости выпускаемых изделий в последние годы на базе автоматизированного оборудования и электроники разрабатываются гибкие автоматизированные производственные системы (ГАПС), позволяющие изготовлять отдельные детали и изделия различного исполнения без перенастройки оборудования. Количество изделий, выпускаемых на ГАПС, задается при ее разработке.

В зависимости от конструкций и габаритных размеров электрических машин и аппаратов требуются различные технологические процессы сборки . Выбор технологического процесса сборки, порядка следования операций и оборудования определяется конструкцией, объемом выпуска и степенью унификации их, а также конкретными условиями, имеющимися на заводе.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Литература

1. Обоснование выбора заготовки

Оптимальный метод получения заготовки подбирают в зависимости от ряда факторов: материала детали, технических требований по ее изготовлению, объема и серийности выпуска, формы поверхностей и размеров деталей. Метод получения заготовки, обеспечивающий технологичность и минимальную себестоимость считается оптимальным.

В машиностроении для получения заготовок наиболее широко применяют следующие методы:

литье;

обработку металлов давлением;

сварку;

комбинации этих методов.

Каждый из вышеперечисленных методов содержит большое число способов получения заготовок.

В качестве метода получения заготовки принимаем обработку металла давлением. Выбор обоснован тем, что материалом детали является конструкционная сталь 40Х. Дополнительным фактором, определяющим выбор заготовки, является сложность конфигурации детали и тип производства (условно принимаем что деталь изготавливается в условиях серийного производства. Принимаем штамповку на горизонтально-ковочных машинах.

Данный тип штамповок позволяет получать заготовки минимальной массой 0,1 кг, 17-18 квалитета точности с шероховатостью 160-320 мкм в условиях мелкосерийного производства.

заготовка машиностроение маршрут деталь

2. Разработка маршрута обработки детали

Маршрут обработки детали:

Операция 005. Заготовительная. Штамповка на КГШП.

Заготовительный цех.

Операция 010. Фрезерная.

Сверлильно-фрезерно-расточной станок 2254ВМФ4.

1. Фрезеровать плоскость, выдерживая размер 7.

2. Сверлить 2 отверстия D 12,5.

3. Зенкеровать отверстие D 26,1.

4. Зенкеровать отверстие D32.

5. Зенкеровать отверстие D35,6.

6. Развернуть отверстие D36.

7. Зенковать фаску 0,5 х 45 0 .

Операция 015. Токарная.

Токарно-винторезный 16К20.

1. Подрезать торец, выдерживая размер 152.

2. Точить поверхность D37, выдерживая размер 116.

3. Точить 2 фаски 2 х 45 0 .

4. Нарезать резьбу М30х2.

Операция 020. Фрезерная

Вертикально-фрезерный 6Р11.

1. Фрезеровать поверхность, выдерживая размеры 20 и 94.

Операция 025. Вертикально-сверлильная.

Вертикально-сверлильный 2Н125.

Установ 1.

1. Сверлить 2 отверстия D9.

2. Сверлиль отверстие D8,5.

3. Нарезать резьбу К1/8 / .

Установ 2.

1. Сверлить отверстие D21.

2. Сверлить отверстие D29.

Операция 030 Слесарная.

Притупить острые кромки.

Операция 035. Технический контроль.

3. Выбор технологического оборудования и инструмента

Для изготовления детали "Наконечник" подбираем следующие станки

1. Сверлильно-фрезерно-расточной станок с ЧПУ и инструментальным магазином 2254ВМФ4;

2. Токарно-винторезный станок 16К20;

3. Вертикально-фрезерный станок 6Р11;

4. Вертикально-сверлильный станок 2Н125.

В качестве станочных приспособлений используем: для токарной-операции - 4-х кулачковый патрон, для остальных операций - специальные приспособления.

При изготовлении данной детали используется следующий режущий инструмент:

Фреза торцевая с механическим креплением многогранных пластин: фреза 2214-0386 ГОСТ 26595-85 Z = 8, D = 100 мм.

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 8,5 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0020 ГОСТ 10903-77.

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 9 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0023 ГОСТ 10903-77.

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 12,5 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0040 ГОСТ 10903-77.

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 21 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0073 ГОСТ 10903-77.

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 29 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0100 ГОСТ 10903-77.

Зенкер цельный с коническим хвостовиком из быстрорежущей стали, диаметром D = 26 мм. длиной 286 мм для обработки сквозного отверстия. Обозначение: 2323-2596 ГОСТ 12489-71.

Зенкер цельный с коническим хвостовиком из быстрорежущей стали, диаметром D = 32 мм. длиной 334 мм. для обработки глухого отверстия. Обозначение: 2323-0555 ГОСТ 12489-71.

Зенкер цельный с коническим хвостовиком из быстрорежущей стали, диаметром D = 35,6 мм. длиной 334 мм. для обработки глухого отверстия. Обозначение: 2323-0558 ГОСТ 12489-71.

Развертка машинная цельная с коническим хвостовиком D36 мм. длиной 325 мм. Обозначение: 2363-3502 ГОСТ 1672-82.

Зенковка коническая типа 10, диаметром D = 80 мм. с углом при вершине 90. Обозначение: Зенковка 2353-0126 ГОСТ 14953-80.

Резец правый проходной упорный отогнутый с углом в плане 90 o типа 1, сечения 20 х 12. Обозначение: Резец 2101-0565 ГОСТ 18870-73.

Резец токарный резьбовой с пластинкой из быстрорежущей стали для метрической резьбы с шагом 3 типа 1, сечения 20 х 12.

Обозначение: 2660-2503 2 ГОСТ 18876-73.

Метчик машинный 2621-1509 ГОСТ 3266-81.

Для контроля размеров данной детали, применяем следующий мерительный инструмент:

Штангенциркуль ШЦ-I-125-0,1 ГОСТ 166-89;

Штангенциркуль ШЦ-II-400-0,05 ГОСТ 166-89.

Для контроля размера отверстия D36 используем калибр - пробку.

Набор образцов шероховатости 0,2 - 0,8 ШЦВ ГОСТ 9378 - 93.

4. Определение промежуточных припусков, допусков и размеров

4.1 Табличным методом на все поверхности

Необходимые припуски и допуски на обрабатываемые поверхности выбираем по ГОСТ 1855-55.

Припуски на механическую обработку детали "Наконечник"

4.2 Аналитическим методом на один переход или на одну операцию

Расчет припусков аналитическим методом производим для поверхности Шероховатость Ra5.

Технологический маршрут обработки отверстия состоит из зенкерования, чернового и чистового развертывания

Технологический маршрут обработки отверстия состоит из зенкерования и чернового, чистового развертывания.

Расчет припусков производим по следующей формуле:

(1)

где R - высота неровностей профиля на предшествующем переходе;

- глубина дефектного слоя на предшествующем переходе;

- суммарные отклонения расположения поверхности (отклонения от параллельности, перпендикулярности, соосности, симметричности, пересечения осей, позиционное) на предшествующем переходе;

- погрешность установки на выполняемом переходе.

Высоту микронеровностей R и глубину дефектного слоя для каждого перехода находим в таблице методического пособия.

Суммарное значение, характеризующее качество поверхности штампованных заготовок составляет 800 мкм. R= 100 мкм; = 100 мкм; R= 20 мкм; = 20 мкм;

Суммарное значение пространственных отклонений оси обрабатываемого отверстия относительно оси центра определится по формуле:

, (2)

где - смещение обрабатываемой поверхности относительно поверхности используемой в качестве технологической базы при зенкеровании отверстий, мкм

(3)

где - допуск на размер 20 мм. = 1200 мкм.

- допуск на размер 156,2 мм. = 1600 мм.

Величину коробления отверстия следует учитывать как в диаметральном, так и в осевом сечении.

, (4)

где - величина удельного коробления для поковок. = 0,7, и L - диаметр и длина обрабатываемого отверстия. = 20 мм, L = 156,2 мм.

мкм.

мкм.

Величина остаточного пространственного отклонения после зенкерования:

Р 2 = 0,05 Р = 0,05 1006 = 50 мкм.

Величина остаточного пространственного отклонения после чернового развертывания:

Р 3 = 0,04 Р = 0,005 1006 = 4 мкм.

Величина остаточного пространственного отклонения после чистового развертывания:

Р 4 = 0,002 Р = 0,002 1006 = 2 мкм.

При определении погрешности установки д У на выполняемом переходе при определении промежуточного припуска требуется определить погрешность закрепления (погрешность базирования для тел вращения равна нулю). Погрешность закрепления заготовки при закреплении ее в призматическом зажиме: 150 мкм.

Остаточная погрешность при черновом развертывании:

0,05 150 = 7 мкм.

Остаточная погрешность при чистовом развертывании:

0,04 150 = 6 мкм.

Производим расчет минимальных значений межоперационных припусков: зенкерование.

мкм.

Черновое развертывание:

мкм.

Чистовое развертывание:

мкм.

Наибольший предельный размер по переходам определяем последовательным вычитанием от чертежного размера минимального припуска каждого технологического перехода.

Наибольший диаметр детали: d Р4 = 36,25 мм.

Для чистового развертывания: d Р3 = 36,25 - 0,094 =36,156 мм.

Для чернового развертывания: d Р2 = 35,156 - 0,501 = 35,655 мм.

Для зенкерования:

d Р1 = 35,655 - 3,63 = 32,025 мм.

Значения допусков каждого технологического перехода и заготовки принимаем по таблицам в соответствии с квалитетом, используемого метода обработки.

Квалитет после чистового развертывания: ;

Квалитет после чернового развертывания: H12;

Квалитет после зенкерования: H14;

Квалитет заготовки: .

Наименьшие предельные размеры определяем вычетанием допусков от наибольших предельных размеров:

d MIN4 = 36,25 - 0,023 = 36,02 мм.

d MIN3 = 36,156 - 0,25 = 35,906 мм.

d MIN2 = 35,655 - 0,62 = 35,035 мм.

d MIN1 = 32,025 - 1,2 = 30,825 мм.

Максимальные предельные значения припусков Z ПР. МАХ равны разности наименьших предельных размеров. А минимальные значения Z ПР. МIN соответственно разности наибольших предельных размеров предшествующего и выполняемого переходов.

Z ПР. МIN3 = 35,655 - 32,025 = 3,63 мм.

Z ПР. МIN2 = 36,156 - 35,655 = 0,501 мм.

Z ПР. МIN1 = 36,25 - 36,156 = 0,094 мм.

Z ПР. МAX3 = 35,035 - 30,825 = 4,21 мм.

Z ПР. МAX2 = 35,906 - 35,035 = 0,871 мм.

Z ПР. МAX1 = 36,02 - 35,906 = 0,114 мм.

Общие припуски Z О. МАХ и Z О. МIN определяем, суммируя промежуточные припуски.

Z О. МAX = 4,21 + 0,871 + 0,114 = 5, 195 мм.

Z О. МIN = 3,63 + 0,501 + 0,094 = 4,221 мм.

Полученные данные сводим в результирующую таблицу.

Технологические

переходы обработки поверхности

Элементы припуска

Расчетный припуск, мкм.

Допуск д, мкм

Предельный размер, мм.

Предельные значения припусков, мкм

Заготовка

Зенкерование

Развертывание черновое

Развертывание чистовое

Окончательно получаем размеры:

Заготовки: d ЗАГ. =;

После зенкерования: d 2 = 35,035 +0,62 мм.

После чернового развертывания: d 3 = 35,906 +0,25 мм.

После чистового развертывания: d 4 = мм.

Диаметры режущих инструментов отображены в пункте 3.

5. Назначение режимов резания

5.1 Назначение режимов резания аналитическим методом на одну операцию

010 Фрезерная операция. Фрезеровать плоскость, выдерживая размер 7 мм.

а) Глубина резания. При фрезеровании торцевой фрезой глубина резания определяется в направлении параллельном оси фрезы и равна припуску на обработку. t =2,1 мм.

б) Ширина фрезерования определяется в направлении, перпендикулярном к оси фрезы. В = 68 мм.

в) Подача. При фрезеровании различают подачу на зуб, подачу на один оборот и подачу минутную.

(5)

где n - частота вращения фрезы, об/мин;

z - число зубьев фрезы.

При мощности станка N = 6,3 кВт S = 0,14.0,28 мм/зуб.

Принимаем S = 0,18 мм/зуб.

мм/об.

в) Скорость резания.

(6)

Где Т - период стойкости. В данном случае Т = 180 мин. - общий поправочный коэффициент

(7)

- коэффициент учитывающий обрабатываемый материал.

nV (8) НВ = 170; nV = 1,25 (1; с.262; табл.2)

1,25 =1,15

- коэффициент, учитывающий материал инструмента; = 1

(1; с.263; табл.5)

- коэффициент, учитывающий состояние поверхности заготовки; = 0,8 (1; с.263; табл.6)

C V = 445; Q = 0,2; х = 0,15; y = 0,35; u = 0,2; P = 0; m = 0,32 (1; с.288; табл.39)

м/мин.

г) Частота вращения шпинделя.

n (9) n об/мин.

Корректируем по паспорту станка: n = 400 об/мин.

мм/мин.

д) Фактическая скорость резания

(10)

м/мин.

е) Окружная сила.

(11)

n (12)

где n = 0,3 (1; с.264; табл.) 0,3 = 0,97

С P =54,5; Х = 0,9; Y = 0,74; U = 1; Q = 1; W = 0.

5.2 Табличным методом на остальные операции

Назначение режимов резания табличным методом произоводится согласно справочнику режимов резания металлов. Полученные данные вносим в результирующую таблицу.

Режимы резания на все поверхности.

Наименование операции

и перехода

Габаритный размер

Глубина резания, мм.

Подача, мм/об.

Скорость резания, м/мин

Частота вращения шпинделя, об/мин.

Операция 010 Фрезерная

1. Фрезеровать поверхность, выдерживая размер 7

2. Сверлить 2 отверстия 12,5

3. Зенкеровать отверстие 26,1.

4. Зенкеровать отверстие 32.

5. Зенкеровать отверстие 35,6

6. Развернуть отверстие D36

7. Зенковать фаску 0,5 х 45 o

Операция 015 Токарная

1. Подрезать торец, выдерживая размер 152

2. Точить поверхность D37, выдерживая размер 116

3. Нарезать резьбу М30х2

Операция 020 Фрезерная

Фрезеровать поверхность, выдерживая размеры 20 и 94

Операция 025 Вертикально-сверлильная

1. Сверлить 2 отверстия 9

2. Сверлить отверстие 8,5

3. Сверлить отверстие 21

4. Сверлить отверстие 29

6. Компоновка станочного приспособления на одну из операций механической обработки

Проектируем станочное приспособление для вертикально-сверлильного и вертикально-фрезерных станков.

Приспособление представляет собой плиту (поз 1.) на которую с помощью штифтов (поз.8) и винтов (поз.7) монтируются 2 призмы (поз.10). Со стороны одной из призм расположен упор (поз.3) с расположенным в нем пальцем, служащим для базирования заготовки. Прижим детали обеспечивается за счет планки (поз 3), которая одним краем свободно вращается вокруг винта (поз.5), а в другой ее край, имеющий форму прорези, входит винт с последующим прижимом гайкой (поз.12).

Для фиксации приспособления на столе станка в теле плиты выполнены проушены и вмонтированы 2 шпонки (поз.13), служащие для центрования приспособления. Транспортировка осуществляется в ручную.

7. Расчет приспособления на точность механической обработки

При расчете точности приспособления необходимо определить допускаемую величину погрешности е пр, для чего определяем все составляющие погрешности. (в качестве координирующего размера принимаем D29 +0 .2 8)

В общем случае погрешнось определяется по формуле:

где - допуск на координирующий размер. В данном случае Т = 0,28 мм;

- коэффициент точности, учитывающий возможное отклонение рассеяния значений составляющих величин от закона нормального распределения (= 1,0…1,2 в зависимости от количества значимых слагаемых, чем их больше, тем коэффициент меньше), принимаем;

- коэффициент, учитывающий долю погрешности обработки в суммарной погрешности, вызываемой факторами, не зависящими от приспособления: = 0,3…0,5; принимаем = 0,3;

Остальные значения формулы представляют собой совокупность погрешностей, определяемых ниже.

1. Погрешность базирования б возникает при несовпадении измерительной и технологической баз. При обработке отверстия погрешность базирования равна нулю.

2. Погрешность закрепления заготовки е з возникает в результате действия сил зажима. Погрешность закрепления при использовании ручных винтовых зажимов равна 25 мкм.

3. Погрешность установки приспособления на станке зависит от зазоров между присоединительными элементами приспособления и станка, а также от неточности изготовления присоединительных элементов. Она равна зазору между Т-образным пазом стола и установочным элементом. В используемом приспособлении размер ширины паза равна 18H7 мм. Размер установочной шпонки 18h6. Предельные отклонения размеров и. Максимальный зазор и соответственно максимальная погрешность установки приспособления на станке = 0,029 мм.

4. Погрешность износа - погрешность, вызванная износом установочных элементов приспособлений, характеризующее отклонение заготовки от требуемого положения вследствие износа установочных элементов в направлении выполняемых размеров.

Приближенно износ установочных элементов может определяться по следующей формуле:

где U 0 - средний износ установочных элементов для чугунной заготовки при усилии зажима W = 10 кН и базовом числе установок N = 100000;

k 1 , k 2 , k 3 , k 4 - коэффициенты, учитывающие соответственно влияние на износ материала заготовки, оборудования, условий обработки и числа установок заготовки, отличающиеся от принятых при определении U 0 .

При установке на опорные гладкие пластины U 0 = 40 мкм.

k 1 = 0,95 (сталь незакаленная); k 2 = 1,25 (специальное); k 3 = 0,95 (лезвийная обработка стали с охлаждением); k 4 = 1,3 (до 40000 установок)

мкм.

5. Геометрическая погрешность станка е ст после чистовой обработке равна 10 мкм.

6. Погрешность настройки станка на размер е н. ст зависит от типа обработки и выдерживаемого размера. В данном случае е н. ст =10 мкм.

Определяем погрешность приспособления:

мкм.

Суммарная погрешность обработки заготовки по координирующему размеру с использованием приспособления не должна превышать величину допуска Т на него, указанному в чертеже. Приведенное условие имеет вид:

где - статические погрешности, связанные с приспособлением, а также погрешности, в явном виде влияющие на точность изготовления приспособления.

- погрешности, зависящие от технологического процесса и в явном виде на точность изготовления приспособления не влияющие.

Значения погрешностей первой группы найдены выше.

Суммарная погрешность обработки, не зависящая от приспособления определяется как часть допуска на координирующий размер:

мкм

мкм.

мкм. - Условие выполняется.

Литература

1. Справочник технолога машиностроения; - М.: "Машиностроение" под редакцией А.Г. Косиловой, Р.К. Мещеряков; 2 тома; 2003 г.

2. Н.А. Нефедов, К.А. Осипов; Сборник задач и примеров по резанию металлов и режущему инструменту; - М.: "Машиностроение"; 1990 г.

3. Б.А. Кузьмин, Ю.Е. Абраменко, М.А. Кудрявцев, В.Н. Евсеев, В.Н. Кузьминцев; Технология металлов и конструкционные материалы; - М.: "Машиностроение"; 2003 г.

4. А.Ф. Горбацевич, В.А. Шкред; Курсовое проектирование по технологии машиностроения; - М.: "Машиностроение"; 1995 г.

5. В.Д. Мягков; Допуски и посадки. Справочник; - М.: "Машиностроение"; 2002 г.

6. В.И. Яковлева; Общемашиностроительные нормативы режимов резания; 2-е издание; - М.: "Машиностроение"; 2000 г.

7. В.М. Виноградов; Технология машиностроения: введение в специальность; - М.: "Академия"; 2006 г.;

Размещено на Allbest.ru

Подобные документы

    Выбор способа получения заготовки. Анализ технологичности конструкции детали. Выбор методов обработки поверхности заготовки, схем базирования заготовки. Расчет припусков, промежуточных технологических размеров. Проектирование специальной оснастки.

    курсовая работа , добавлен 04.02.2014

    Анализ эксплуатационных свойств и технологичности конструкции детали. Выбор заготовки и способа ее получения. Проектирование техпроцесса обработки. Расчет погрешностей базирования, припусков на обработку, режимов резания, размеров заготовок, норм времени.

    курсовая работа , добавлен 09.03.2014

    Характеристика обрабатываемой детали, материала заготовки. Выбор оптимального метода получения заготовки. Разработка технологического маршрута обработки детали. Центрирование заготовок на токарно-винторезных станках. Расчет приспособления на точность.

    контрольная работа , добавлен 04.12.2013

    Анализ технологичности детали "Диск". Анализ способов получения заготовки и выбор оптимального. Составление технологического маршрута обработки детали. Выбор оборудования и инструментов. Расчет припусков на механическую обработку и режимов резания.

    курсовая работа , добавлен 26.01.2013

    Анализ технологичности детали качественным и количественным методом. Материал вала-шестерни и его свойства. Выбор вида и метода получения заготовки. Разработка маршрута технологического процесса. Расчёт межоперационных припусков, допусков и размеров.

    курсовая работа , добавлен 22.04.2016

    Основные процессы технологии машиностроения. Определение типа производства. Выбор метода получения заготовки. Технологический процесс изготовления детали "Ролик", выбор оборудования, приспособления, режущего инструмента. Расчет припусков и режима резания.

    курсовая работа , добавлен 04.09.2009

    Описание и конструкторско-технологический анализ шестерни ведущей. Назначение детали, описание материала. Выбор вида заготовки и метод её получения. Определение промежуточных припусков, технологических размеров и допусков. Расчёт режимов резания.

    курсовая работа , добавлен 14.01.2015

    Описание служебного назначения конструкции узла, детали. Выбор метода получения заготовки и его техническое обоснование. Расчет межоперационных припусков, допусков и размеров. Техническое нормирование и принципы операции нарезания зубчатого венца.

    курсовая работа , добавлен 22.10.2014

    Описание служебного назначения детали и ее технологических требований. Выбор типа производства. Выбор способа получения заготовки. Проектирование маршрута изготовления детали. Расчет и определение промежуточных припусков на обработку поверхности.

    курсовая работа , добавлен 09.06.2005

    Краткие сведения о детали - вал-шестерня. Материал детали и его свойства. Анализ технологичности. Выбор типа производства и оптимального размера партии. Обоснование метода получения заготовки. Расчет промежуточных припусков. Расчет режущего инструмента.

Тип производства – классификационная категория, выделяемая по признакам широты номенклатуры, регулярности, стабильности и объема выпускаемых изделий. В зависимости от потребностей человека, учреждения, отрасли или государства изделия выпускаются предприятиями в различных количествах. Соответственно производства условно подразделяют на единичное, серийное или массовое.

Отнесение предприятия (завода) или цеха к тому или иному типу производства называется условным потому, что возможно одновременное существование различных типов, т.е. отдельные изделия или детали могут изготовляться в соответствии с разными принципами: одни – единичным порядком, другие – серийным или одни – массовым, другие – серийным и т.п. Так, па предприятиях тяжелого машиностроения, характеризующихся единичным производством сложных крупногабаритных изделий (например, шагающих экскаваторов), требующиеся для них в большом количестве мелкие унифицированные или стандартизированные детали могут изготовляться по принципу серийного и даже массового производства.

Под единичным (индивидуальным) производством понимают изготовление единичных экземпляров изделий по неизменным чертежам, которое не повторяется либо повторяется редко, через неопределенное время.

Отличительными особенностями единичного типа производства являются: миогономенклатурность выпускаемой продукции; отсутствие постоянного закрепления за рабочими местами определенных изделий; использование универсального оборудования, приспособлений и инструментов; размещение оборудования по однотипным группам; наличие высококвалифицированных рабочих-уииверсалов; большой объем ручных операций; высокая длительность производственного цикла и др. К нему относят выпуск экспериментальных или уникальных образцов машиностроительных изделий, любого нестандартного оборудования.

Под серийным производством понимают изготовление изделий по неизменным чертежам периодически повторяющимися партиями в течение определенного периода времени.

В зависимости от числа изделий в партии его подразделяют на: мелкосерийное, серийное и крупносерийное. Такое подразделение достаточно условно. При одном и том же числе изделий в партии, по разных размерах и сложности, производство можно отнести к разным видам. Например, изготовление 25 проходческих комбайнов для выработки месторождений калийной руды можно отнести к среднесерийному производству, 25 тяжелых транспортных самолетов "Руслан" – к крупносерийному, а 25 малогабаритных токарных станков – к мелкосерийному. Ориентировочно серийность производства определяют по табл. 1.1.

Таблица 1.1

Серийность производства

Продукцией серийного производства являются изделия, выпускаемые в значительном количестве: металлорежущие станки, насосы, компрессоры и т.д. В этом случае используют высокопроизводительное универсальное и специализированное оборудование; специализацию рабочих мест по выполнению нескольких закрепленных операций; универсальные, переналаживаемые быстродействующие приспособления; универсальный и специальный инструмент. Широко применяют станки с ЧПУ, многоцелевые станки и гибкие переналаживаемые системы (ГПС). Серийное производство также характеризуется незначительным объемом ручных операций, наличием рабочих средней квалификации, незначительной длительностью производственного цикла и др.

Под массовым производством понимают изготовление изделий по неизменным чертежам в больших количествах и в течение длительного периода времени.

Продукцией массового производства являются изделия узкой номенклатуры и стандартного типа, например автомобили, велосипеды, электродвигатели, швейные и стиральные машины, подшипники и т.п. На большинстве рабочих мест выполняют только одну закрепленную постоянно повторяющуюся операцию. Массовому производству свойственны следующие особенности: ограниченная номенклатура изделий; предметная специализация рабочих мест; расположение оборудования в последовательности выполнения операций; применение высокопроизводительного автоматизированного и роботизированного оборудования, специальных приспособлений и инструмента; широкое использование транспортных устройств для передачи заготовок вдоль поточной линии; механизация и автоматизация технического контроля; наличие рабочих невысокой квалификации; минимальная длительность производственного цикла и др.

Тип производства определяют по коэффициенту закрепления операций К з.о

где Q – число операций, выполненных или подлежащих выполнению в течение планового периода, равного одному месяцу; Р – число рабочих, выполняющих различные операции.

Коэффициент закрепления операций является одной из основных характеристик типа производства (ГОСТ 3.1121–84). Значение для массового производства составляет К з.о = 1, для крупносерийного – 1–10, для серийного – 10–20. При единичном производстве К з.о может быть более 40.

В машиностроении различают две формы производства: непоточное и поточное.

Непоточным называют производство, при котором его объекты в процессе изготовления находятся в движении с различной продолжительностью операций и перерывов между ними. Эта форма характерна для единичного производства.

Поточным называют производство, при котором операции закреплены за определенными рабочими местами, расположенными в порядке их выполнения, а объект производства передается с одного рабочего места на другое с определенным тактом.

Это наиболее совершенная с точки зрения минимизации издержек форма организации массового производства. По этому принципу строятся автоматические линии обработки и сборки. Особенность автоматического производства – выполнение операций без непосредственного участия рабочего либо под его наблюдением и контролем. Поточное производство может быть и неавтоматическим, если установку заготовок и их снятие после обработки выполняет рабочий.

Для организации поточного производства требуется одинаковая или кратная производительность на всех операциях. На линии обработанные заготовки или собранные узлы выпускаются через строго определенный интервал времени, называемый тактом выпуска.

Такт выпуска (мин/шт.) – интервал времени Т в между выпуском двух изделий или заготовок определенных наименований, следующих одно за другим,

где Фд – действительный фонд времени в планируемом периоде (месяц, сутки, смена), ч; N – производственная программа на этот же период (число изделий, шт.).

Цикл – интервал календарного времени от начала до конца выполнения какого-либо повторяющегося технологического или производственного процесса независимо от числа одновременно изготовляемых изделий.

Различают цикл изготовления изделия в целом, отдельных сборочных единиц и деталей, выполнения отдельных операций.

Каждое производство обладает определенной производственной мощностью , под которой понимают максимально возможный выпуск продукции установленных номенклатуры и количества, который может быть осуществлен за определенный период времени при установленном режиме работы.

Понравилась статья? Поделитесь ей